350 rub
Journal Achievements of Modern Radioelectronics №4 for 2025 г.
Article in number:
Current state of microwave radionavigation systems in underground structures
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700784-202504-05
UDC: 621.396
Authors:

D.V. Fedosov1, A.V. Nikolaev2, A.V. Kolesnikov3, E.I. Starovoitov4, A.A. Logunov5

1,3 RPSLL HF-COMMUNICATIONS (Omsk, Russia)
2 Moscow technical university of communications and informatics (Moscow, Russia)
4 Progress Microelectronic Research Institute (Moscow, Russia)
5 PJSC «S.P. Korolev Rocket and Space Corporation Energia» (Korolev, Russia)
1 xferra@mail.ru, 2 alarmoren@yandex.com, 3 kolesnikov.radio@yandex.ru, 4 info@i-progress.tech, 5 post@rsce.ru

Abstract:

To improve the safety and productivity of underground enterprises, the deployment of positioning systems is currently required. Since underground structures such as mines, quarries, subway tunnels, collectors are not accessible to satellite navigation systems, local positioning technologies are used.

The purpose of the article: to systematize and analyze modern research in the field of underground navigation of ultra-short waves and commercial solutions presented on the market.

The result of the article is: microwave navigation methods are considered, and data on the claimed accuracy of distance determination in various sources is provided.

The practical significance lies in the generalization and systematization of underground methods and positioning systems, which allows for the formation of approaches to their development and improvement.

Pages: 48-63
For citation

Fedosov D.V., Nikolaev A.V., Kolesnikov A.V., Starovoitov E.I., Logunov A.A. Current state of microwave radionavigation systems in underground structures. Achievements of modern radioelectronics. 2025. V. 79. № 4. P. 48–63. DOI: https://doi.org/10.18127/j20700784-202504-05 [in Russian]

References
  1. Zaxarov V.N., Kubrin S.S. Cifrovaya transformaciya i intellektualizaciya gornotexnicheskix system. Gorny`j informacionno-analiticheskij byulleten` (nauchno-texnicheskij zhurnal). 2022. № 5-2. S. 31–47. https://doi.org/10.25018/0236_1493_2022_52_0_31
  2. Ferreira A.F.G., Fernandes D.M.A., Catarino A.P., Monteiro J.L. Localization and positioning systems for emergency responders: a survey. IEEE Communications surveys and tutorials. 2017. V. 19. № 4. R. 2836–2870. http://dx.doi.org/10.1109/COMST.2017.2703620
  3. Seguel F. Underground mine positioning: a review. IEEE Sensors Journal. 2022. V. 22. № 6. https://doi.org/10.1109/ JSEN.2021.3112547
  4. Fernando L.P. Positioning systems for underground tunnel environments. CERN-THESIS-2016-101. P. 187. URL: https://cds.cern.ch/record/ 2215397
  5. Hancke G.P., Silva B. Wireless positioning in underground mines. IEEE Industrial electronics magazine. 2021. V. 15. № 3. P. 39–48. https://doi.org/10.1109/MIE.2020.3036622
  6. Bensky A. Wireless positioning technologies and applications. A. Bensky-Artech House. 2008. P. 297.
  7. Forooshani A.E., Bashir S., Michelson D.G., Noghanian S. A survey of wireless communications and propagation modeling in underground mines. IEEE Communications surveys & tutorials. 2013. V. 15. P. 1524–1545. https://doi.org/10.1109/SURV.2013. 031413.00130
  8. Fedosov D.V., Nikolaev A.V., Kolesnikov A.V., Lapin S.E`., Babenko A.G. Obzor sposobov organizacii podzemnoj svyazi i perspektivy` ispol`zovaniya diapazona srednix voln v shaxtax. Trudy` NIIR. 2022. № 1. S. 19–36. https://doi.org/10.34832/NIIR.2022.8.1.003
  9. Patri A., Nayak A., Jayanthu Dr.S. Wireless communication systems for underground mines – A critical appraisal. International Journal of Engineering Trends and Technology (IJETT). 2013. V. 4(7). S. 3149–3153. URL: http://www.ijettjournal.org/archive/ijett-v4i7p174
  10. Yarkan S., Guzelgoz S., Arslan H., Murphy R. Underground mine communications: a survey. IEEE Communications Surveys & Tutorials. 2009. V. 11. P. 125–142. https://doi.org/10.1109/SURV.2009.090309
  11. Bandyopadhyay L.K., Mishra P.K., Chaulya S.K. Wireless Communication in Underground Mines. New York, NY: Springer US, 1 ed. 2010. https://doi.org/10.1007/978-0-387-98165-9
  12. Bedford M.D., Rodríguez López A.J.A., Foster P.J. Low-cost leaky feeder communication for mines rescue. Mining technology. 2020. V. 129(4). P. 217–227. https://doi.org/10.1080/25726668.2020.1838110
  13. Moschevikin A., Serezhina M., Sikora A. On the possibility to use leaky feeders for positioning in chirp spread spectrum technologies. Proc. 2nd Int. Symp. Wireless Systems within the Conferences on Intelligent Data Acquisition and Advanced Computing Systems, Offenburg. 2014. P. 56–65. https://doi.org/10.1109/IDAACS-SWS.2014.6954624
  14. Pereira F., Theis C., Moreira A., Ricardo M. Multi-technology RF fingerprinting with leaky-feeder in underground tunnels. Proc. Int. Conf. Indoor Positioning and Indoor Navig. (IPIN), Sydney. NSW. 2012. P. 1–9. https://doi.org/10.1109/IPIN.2012.6418871
  15. Serov S.A., Kulikov R.S., Petuxov N.I. Ispol`zovanie mnogoluchevogo rasprostraneniya sverxshirokopolosnogo radiosignala dlya navigacii vnutri pomeshheniya. Radiotexnika. 2022. № 11. T. 86. S. 109–114. https://doi.org/10.18127/j00338486-202211-17
  16. Litvinov S.N., Ladanom S.A., Sheremet E.I. Osobennosti primeneniya sistem pozicionirovaniya na proizvodstve. Dinamika slozhny`x sistem – XXI vek. 2023. № 2. T. 17. S. 17–26. https://doi.org/10.18127/j19997493-202302-02
  17. Hrovat A., Kandus G., Javornik T. A Survey of radio propagation modeling for tunnels. IEEE Communications surveys & tutorials. 2013. V. 16 (2). P. 658–669. https://doi.org/10.1109/SURV.2013.091213.00175
  18. Emslie A., Legace R., Strong P. Theory of the propagation of UHF radio waves in coal mine tunnels. IEEE Transactions on antennas and propagation. 1975. V. 23(2). P. 192–205. https://doi.org/10.1109/TAP.1975.1141041
  19. Ranjan A., Sahu H.B., Misra P. Modeling and measurements for wireless communication networks in underground mine environments. Measurement. 2019. 106980. https://doi.org/10.1016/j.measurement.2019.106980
  20. Zhang Y.P., Zheng G.X., Sheng J.H. Radio propagation at 900 MHz in underground coal mines. IEEE Transactions on antennas and propagation. 2001. V. 49 (5). P. 757–762. https://doi.org/10.1109/8.929630
  21. Ranjan A., Misra P., Dwivedi B., Sahu H. B. Studies on propagation characteristics of radio waves for wireless networks in underground coal mines. Wireless personal communications. 2017. V. 97(2). P. 2819–2832. https://doi.org/10.1007/s11277-017-4636-y
  22. Bedford M.D., Kennedy G.A., Foster P.J. Radio transmission characteristics in tunnel environments. Mining technology. 2017. V. 126(2). P. 77-87. https://doi.org/10.1080/14749009.2016.1259196
  23. Jacksha R, Zhou C. Measurement of RF propagation around corners in underground mines and tunnels. Transactions of the society for mining, metallurgy, and exploration. 2016. V. 340(1). P. 30–37. https://doi.org/10.19150/trans.7324
  24. Zhang Y.P. Novel model for propagation loss prediction in tunnels. IEEE Transactions on vehicular technology. 2003. V. 52. № 5. P. 1308–1314. https://doi.org/10.1109/TVT.2003.816647
  25. Hakem N., Delisle G., Coulibaly Y. Radio-wave propagation into an underground mine environment at 2.4 GHz, 5.8 GHz and 60 GHz. The 8th European Conference on Antennas and Propagation (EuCAP 2014). https://doi.org/10.1109/EuCAP.2014.6902607
  26. Taleb H.A., Ghanem K., Zaaimia M. Z., Mabrouk I. B., Nedil M. On 60 GHz MIMO diversity in an undeground mine propagation channel. IEEE Antennas and wireless propagation letters. 2020. V. 19. № 10. P. 1769–1773. https://doi.org/10.1109/LAWP.2020.3017350
  27. Tariq S.A. M. et al. Angular dispersion of a scattered underground wireless channel at 60 GHz. IEEE Access. 2020. V. 8. https://doi.org/10.1109/ACCESS.2020.2986716
  28. Saleem A., Zhang X., Xu Y., Albalawi U.A., Younes S. A critical review on channel modeling: implementations, challenges and applications. Electronics. 2023. V. 12. № 9. P. 1–42. https://doi.org/10.3390/electronics12092014
  29. Chehri A., Fortier P., Tardif P.M. Characterization of the ultra-wideband channel in confined environments with diffracting rough surfaces. Wireless personal communications. 2012. V. 62. P. 859–877. http://dx.doi.org/10.1007/s11277-010-0097-2
  30. Chen Yu, et al. A survey on LPWAN-5G Integration: main challenges and potential solutions. IEEE Access. 2022. V. 10. https://doi.org/ 10.1109/ACCESS.2022.3160193
  31. Cheng B., Cheng X., Chen J. Lightweight monitoring and control system for coal mine safety using REST style. ISA Transactions. 2015. V. 54. P. 229–239. https://doi.org/10.1016/j.isatra.2014.07.004
  32. Qin Y., Zhou C., Yang S. H., Wang F. A distributed newton iteration-based localization scheme in underground tunnels. Proceedings of the 2012 UKACC International Conference on Control, CONTROL 2012, 2012, pp. 851–856. http://dx.doi.org/10.1109/ CONTROL.2012.6334743
  33. Tahir N., Karim M. M., Sharif K., Li F., Ahmed N. Quadrant-based weighted centroid algorithm for localization in underground mines. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinforma­tics).2018. V. 10874 LNCS. P. 462–472. http://dx.doi.org/10.1007/978-3-319-94268-1_38
  34. Moridi M., Kawamura Y., Sharifzadeh M., Chanda E.K., Wagner M., Jang H., Okawa H. Development of underground mine monitoring and communication system integrated ZigBee and GIS. International journal of mining science and technology. 2015. V. 25. № 5. P. 811–818. http://doi.org/10.1016/j.ijmst.2015.07.017
  35. Song M., Qian J. Improved sequence-based localization applied in coal mine. International Journal of Distributed Sensor Networks. 2016. V. 12. № 11. http://dx.doi.org/10.1177/1550147716669615
  36. Nerguizian C., Despins C., Affes S. Geolocation in mines with an impulse response fingerprinting technique and neural networks. IEEE Transactions on Wireless Communications. 2006. V. 5. P. 603–611. https://doi.org/10.1109/TWC.2006.1611090
  37. Nerguizian C., Despins C., Affes S., Djadel M. Radio-channel characterization of an underground mine at 2.4 GHz. IEEE Transactions on wireless communications. 2005. V. 4. № 5. P. 2441–2453. https://doi.org/10.1109/TWC.2005.853899
  38. Ralston J.C., Hargrave C.O., Hainsworth D.W. Localization of mobile underground mining equipment using wireless Ethernet. Conference Record – IAS Annual Meeting (IEEE Industry Applications Society). 2005. V. 1. P. 225–230. https://doi.org/10.1109/ IAS.2005.1518314
  39. Lin P., Li Q., Fan Q., Gao X., Hu S. A real-time locationbased services system using WiFi fingerprinting algorithm for safety risk assessment of workers in tunnels. Mathematical problems in engineering. 2014. https://doi.org/10.1155/2014/371456
  40. Cypriani M., Delisle G., Hakem N. Wi-Fi-based positioning in underground mine tunnels. 2013 International Conference on Indoor Positioning and Indoor Navigation, IPIN 2013. https://doi.org/10.1109/IPIN.2013.6817894
  41. Guo Y., Liu H., Shu L., Li J. The precise underground localization method based on WIFI network. APCC 2012 – 18th Asia-Pacific Conference on Communications: Green and Smart Communications for IT Innovation. 2012. P. 664–667. https://doi.org/ 10.1109/APCC.2012.6388277
  42. Srikanth B., Kumar H., Rao K. A robust approach for WSN localization for underground coal mine monitoring using improved RSSI technique. Mathematical modelling of engineering problems. 2018. V. 5. P. 225–231 http://dx.doi.org/10.18280/mmep.050314
  43. Li M., Liu Y. Underground coal mine monitoring with wireless sensor networks. ACM Transactions on sensor networks. 2009. V. 5. P. 1–29. https://doi.org/10.1145/1498915.1498916
  44. Fan Q., Li W., Hui J., Wu L., Yu Z., Yan W., Zhou L. Integrated positioning for coal mining machinery in enclosed underground mine based on SINS/WSN. The scientific world journal. 2014. http://dx.doi.org/10.1155/2014/460415
  45. Minhas U.I., Naqvi I. H., Qaisar S., Ali K., Shahid S., Aslam M.A. A WSN for monitoring and event reporting in underground mine environments. IEEE Systems journal. 2018. V. 12. P. 485–496. https://doi.org/10.1109/JSYST.2016.2644109
  46. Liu Z., Li C., Wu D., Dai W., Geng S., Ding Q. A wireless sensor network based personnel positioning scheme in coal mines with blind areas. Sensors. 2010. V. 10. № 11. P. 9891–9918. http://dx.doi.org/10.3390/s101109891
  47. Chehri A., Fortier P., Tardif P. M. UWB-based sensor networks for localization in mining environments. Ad Hoc Networks. 2009. V. 7.
    P. 987–1000. https://doi.org/10.1016/j.adhoc.2008.08.007
  48. Cheng G. Accurate TOA-Based UWB Localization System in Coal Mine Based on WSN. Physics Procedia. 2012. V. 24. P. 534–540. http://dx.doi.org/10.1016/j.adhoc.2008.08.007
  49. Qin Y., Wang F., Zhou C. A distributed UWB-based localization system in under-ground mines. Journal of networks. 2015. V. 10. http://dx.doi.org/10.4304/jnw.10.3.134-140
  50. Chen W. Personnel precise positioning system of coal mine underground based on UWB. Journal of physics: conference series. 2021. № 1920(012115). https://doi.org/10.1088/1742-6596/1920/1/012115
  51. Rusu S.R., Hayes M.J. D. Localization in large-scale underground environments with RFID. 24th Canadian Conference on Electrical and Computer Engineering, 2011. P. 1140–1143. http://dx.doi.org/10.1109/CCECE.2011.6030640
  52. Pereira F., Theis C., Moreira A., Ricardo M. Performance and limits of KNN-based positioning methods for GSM networks over leaky feeder in underground tunnels. Journal of location based services. 2012. V. 6. P. 117–133. https://doi.org/10.1080/ 17489725.2012.692619
  53. Dayekh S., Affes S., Kandil N., Nerguizian C. Cost-effective localization in underground mines using new SIMO/MIMO-like fingerprints and artificial neural networks. 2014 IEEE International Conference on Communications Workshops (ICC). 2014. P. 730–735. http://dx.doi.org/10.1109/ICCW.2014.6881286
  54. Baek J., Choi Y., Lee C., Suh J., Lee S. BBUNS: bluetooth beacon-based underground navigation system to support mine haulage
    operations. Minerals. 2017. V. 7. P. 228. http://dx.doi.org/10.3390/min7110228
  55. Jiang S., Wang W., Peng P. A single-site vehicle positioning method in the rectangular tunnel environment. Remote sensing. 2023. V. 15. № 2. P. 5–27. https://doi.org/10.3390/rs15020527
  56. TALNAX mnogofunkcional`ny`j shaxtny`j informacionny`j kompleks. URL: https://it-ind.ru/product/oborudovanie-svyazi-i-peredachi-dannykh-dlya-shakht-rudnikov-i-tonneley/talnakh-mnogofunktsionalnyy-shakhtnyy-informatsionnyy-kompleks/
  57. GORIZONT mnogofunkcional`ny`j shaxtny`j informacionny`j kompleks. URL: https://it-ind.ru/product/oborudovanie-svyazi-i-peredachi-dannykh-dlya-shakht-rudnikov-i-tonneley/gorizont-mnogofunktsionalnyy-shakhtnyy-informatsionnyy-kompleks/
  58. Vasil`ev V.A. Svyaz`, pozicionirovanie i avarijnoe opoveshhenie v zolotodoby`vayushhix podzemny`x rudnikax. Zoloto i texnologii. 2022. № 1(55). S. 106–110.
  59. Novikov A.V., Panevnikov K.V., Pisarev I.V. Mnogofunkcional`naya sistema bezopasnosti ugol`ny`x shaxt – praktika primeneniya sistem opredeleniya mestopolozheniya i opoveshheniya personala. Gornaya Promy`shlennost`. 2018, № 2(138). S. 93–98.
  60. Novikov A.V., Panevnikov K.V., Pisarev I.V. Rudnik i mnogofunkcional`naya sistema bezopasnosti. Gornaya promy`shlennost`. 2019. № 5. S. 04–09. http://dx.doi.org/10.30686/1609-9192-2019-5-04-09
  61. Novikov A.V., Panevnikov K.V., Pisarev I.V. MFSB – svyaz`, opoveshhenie i opredelenie mestopolozheniya personala v ugol`ny`x shaxtax. Gornaya promy`shlennost`. 2019. № 1. S. 37–40. http://dx.doi.org/10.30686/1609-9192-2019-1-143-37-40
  62. GRANCh. URL: https://www.granch.ru/ru/sistemy-bezopasnosti
  63. ARMAPHONE. URL: https://armaphon.ru/
  64. RADIUS. Tipovy`e texnicheskie resheniya. URL: https://radius-nvic.ru/page7058240.html
  65. RealTrac. URL: https://real-trac.com/ru/
  66. Sistema pozicionirovaniya gornorabochix i transporta SPGT-41. URL: https://uraltexis.ru/production/spgt-41
  67. Mine Radio Systems. URL: https://mineradio.ru/about/?ysclid=l9fav127j1216798476
  68. Becker Mining Systems. Smart underground communications. VHF Leaky feeder system. URL: https://www.becker-mining.com/ sites/default/files/smartcom_vhf_leaky_feeder_system_rev_d_0.pdf
  69. Goryachev D.V., Uxov V.I. Arxitektura sistemy` pozicionirovaniya i svyazi dlya shaxt «Kondor». Ugol` Rossii i majning. 2020. № 7. S. 21–22.
  70. Arxitektura sistemy` pozicionirovaniya i svyazi dlya shaxt «Kondor». Kompaniya DE`P. Sistemy` i sredstva promy`shlennoj avtomatizacii. URL: http://dep.ru/presscentr/articles/gornaya-promyshlennost/arkhitektura-sistemy-pozitsionirovaniya-i-svyazi-dlya-shakht-kondor/
  71. Strata Worldwide.  https://www.strataworldwide.com/mining
  72. Prikaz Federal`noj sluzhby` po e`kologicheskomu, texnologicheskomu i atomnomu nadzoru ot 08.12.2020 №507 «Ob utverzhdenii federal`ny`x norm i pravil v oblasti promy`shlennoj bezopasnosti «Pravila bezopasnosti v ugol`ny`x shaxtax».
  73. GOST R 55154-2019. Oborudovanie gorno-shaxtnoe. Mnogofunkcional`ny`e sistemy` bezopasnosti ugol`ny`x shaxt. Obshhie texni­cheskie trebovaniya.
Date of receipt: 06.12.2024
Approved after review: 06.02.2025
Accepted for publication: 31.03.2025