350 rub
Journal Achievements of Modern Radioelectronics №12 for 2025 г.
Article in number:
Comparability of ionospheric parameter measurements obtained by different observation methods
Type of article: overview article
DOI: https://doi.org/10.18127/j20700784-202512-13
UDC: 550.385.4
Authors:

S.V. Litvinov1, E.A. Chistyakov2, Yu.A. Polevoda3

1–3 MIREA – Russian University of Technology (Moscow, Russia)

1 litvinov_s@mirea.ru, 2 chistyakov@mirea.ru, 3 polevoda@mirea.ru

Abstract:

The need to monitor the state of the ionosphere is beyond doubt. Various hardware and software methods are used to study and monitor the ionosphere parameters. Conventionally, they can be divided into ground-based and space-based instrumentation deployment. The result of these methods is various data on the ionosphere. Most studies of this problem verify various models of the ionosphere and/or radio wave propagation using real data.

Investigations of the most common methods of ionosphere research are carried out: vertical, inclined and return-inclined sounding, external sounding of ionosphere from spacecraft, direct and reverse transionospheric sounding, research of ionosphere by GNSS signals (including radio occultation sounding).

The obtained results allow us to conclude that for verification of ionospheric data obtained by different methods, the results of measuring the total electron content and the altitude profile of electron concentration should be used, as well as the need to continue research in this direction.

Pages: 75-81
For citation

Litvinov S.V., Chistyakov E.A., Polevoda Yu.A. Comparability of ionospheric parameter measurements obtained by different observation methods. Achievements of modern radioelectronics. 2025. V. 79. № 12. P. 75–81. DOI: https://doi.org/10.18127/j20700784-202512-13 [in Russian]

References
  1. Kuznetsov V.D. Kosmicheskaya pogoda i riski kosmicheskoy deyatel'nosti. Kosmicheskaya tekhnika i tekhnologii. 2014. № 3(6). S. 3–13. [in Russian]
  2. Litvinov S.V., Skripachev V.O., Chistyakov E.A. Issledovanie rezul'tatov povyshennoy aktivnosti vspyshek na Solntse v mae 2024 goda. Mezhdunarodnaya mezhvedomstvennaya nauchno-tekhnicheskaya konferentsiya «Kosmicheskie tekhnologii-2024». M.: MIREA Rossiyskiy tekhnologicheskiy universitet. 2024. S. 361–371. [in Russian]
  3. Semenova O.V., Delov L.A., Skripachev V.O., Surovtseva I.V. Issledovanie ionosfery pered sil'nymi zemletryaseniyami v Yuzhnoy Amerike s pomoshch'yu ka DMSP. Sb. nauch. statey po materialam V Mezhdunar. nauch.-praktich. konf. «Aktual'nye problemy i perspektivy razvitiya radiotekhnicheskikh i infokommunikatsionnykh sistem» («Radioinfokom-2021»): 15–19 noyabrya 2021 goda. M.: MIREA – Rossiyskiy tekhnologicheskiy universitet, 2021. S. 120–123. [in Russian]
  4. Wu, M.J., Guo, P., Ma, X. et al. Differences among the total electron content derived by radio occultation, global ionospheric maps and satellite altimetry. J Geod 98, 82 (2024). https://doi.org/10.1007/s00190-024-01893-8.
  5. Sistemnyy monitoring ionosfery. Sb. nauch. trudov. Pod red. N.G. Kotonaevoy. M.: FIZMATLIT. 2019. [in Russian]
  6. RD 52.26.817–2023 «Rukovodstvo po ionosfernym, magnitnym i geliogeofizicheskim nablyudeniyam. Chast' I. Ionosfernye nablyudeniya». [in Russian]
  7. Shagimuratov I.I., Chernyak Yu.V., Zakharenkova I.E., Yakimova G.A., Tepenitsyna N.Yu., Efishov I.I. Internet-servis po sozdaniyu GPS/GLONASS kart polnogo elektronnogo soderzhaniya ionosfery dlya Evropeyskogo regiona. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2016. T. 13. № 1. S. 197–209. DOI 10.21046/2070-7401-2016-13-1-197-209. [in Russian]
  8. Botova M.G., Romanovskaya Yu.V., Namgaladze A.A. Variatsii ionosfery: sopostavlenie rezul'tatov modelirovaniya s dannymi nablyudeniy. Vestnik MGTU. Trudy Murmanskogo gosudarstvennogo tekhnicheskogo universiteta. 2014. T. 17. № 2. S. 385–393. [in Russian]
  9. Krasheninnikov I.V., Shubin V.N. Osobennosti prognozirovaniya raboty ionosfernykh radioliniy v perekhodnykh oblastyakh skachkovogo rasprostraneniya radiovoln. Geliogeofizicheskie issledovaniya. 2022. № 34. S. 25–33. DOI 10.5425/2304-7380_2022_34_25. [in Russian]
  10. Ivanov V.A., Ivanov D.V., Ryabova N.V., Egoshin A.B., Lashchevskiy A.R., Mal'tsev A.V. Kompleksnyy adaptivnyy algoritm obrabotki ionogramm vertikal'no naklonnogo zondirovaniya ionosfery. Geliogeofizicheskie issledovaniya. 2013. № 4. S. 11–23. [in Russian]
  11. O zadachakh i nauchnoy apparature geliogeofizicheskikh sputnikov «Ionosfera-M». GK «Roskosmos» Glavnaya - Publikatsii - Novosti. 02.11.2024. https://www.roscosmos.ru/41020 [in Russian]
  12. RTU MIREA1 gotov k zapusku. Space-π proekt programmy «Dezhurnyy po planete». https://spacepi.space/news/rtu-mirea-1-gotov-k-zapusku [in Russian]
  13. Koval' S.A. Ionosfernyy monitoring v interesakh perspektivnykh adaptivnykh sistem dekametrovoy radiosvyazi: sovremennoe sostoyanie i perspektivy razvitiya. Sistemy upravleniya, svyazi i bezopasnosti. 2020. № 4. S. 73–100. DOI: 10.24411/2410-9916-2020-10403. [in Russian]
  14. Danilkin N.P., Zhbankov G.A., Zhuravlev S.V., Kotonaeva N.G. Transionosfernoe radiozondirovanie - metod diagnostiki nalichiya ionosfernykh neodnorodnostey. Geliogeofizicheskie issledovaniya. 2012. № 1. S. 47–54. [in Russian]
  15. Tereshchenko E.D., Milichenko A.N., Shvets M.V., Chernyakov S.M., Korableva I.V. Opredelenie polnogo elektronnogo soderzhaniya po signalam sputnikov global'noy navigatsionnoy sistemy GLONASS. Vestnik Kol'skogo nauchnogo tsentra RAN. 2015. № 1(20). S. 32–43. [in Russian]
  16. Kupriyanov A.O., Tikhonov V.V., Morozov D.A., Perminov A.Yu. Operativnyy monitoring parametrov ionosfery v lokal'noy oblasti po rezul'tatam mul'tichastotnykh GNSS-izmereniy. Izvestiya vysshikh uchebnykh zavedeniy. Geodeziya i aerofotos"emka. 2018. T. 62. № 6. S. 616-623. DOI 10.30533/0536-101X-2018-62-6-616-623. [in Russian]
  17. Afraymovich E.L., Perevalova N.P. GPS-monitoring verkhney atmosfery Zemli. Irkutsk: GU NTs RVKh VSNTs RAMN. 2006. [in Russian]
  18. Skripachev V.O., Yakovlev O.V. Ispol'zovanie informatsionnykh resursov global'nykh navigatsionnykh sputnikovykh sistem dlya monitoringa ionosfery. Sovremennye informatsionnye tekhnologii i IT-obrazovanie. 2013. № 9. S. 562–566. [in Russian]
  19. Gorbunov R.V., Skripachev V.O., Litvinov S.V., Taradaev S.V. Vozmozhnosti malykh kosmicheskikh apparatov dlya provedeniya radiozatmennykh izmereniy ionosfery. Sb. nauch. statey po materialam VI Mezhdunar. nauch.-praktich. konf. «Radioinfokom-2022»,
    06–10 iyunya 2022 goda. M.: MIREA – Rossiyskiy tekhnologicheskiy universitet. 2022. S. 80–85. [in Russian]
  20. Korlyakov D.S., Litvinov S.V., Semenova O.V. Antennaya sistema sovremennogo ionozonda kompleksnogo zondirovaniya. Sb. nauch. statey po materialam VI Mezhdunar. nauch.-praktich. konf. «Radioinfokom-2022», 06–10 iyunya 2022 goda. M.: MIREA – Rossiyskiy tekhnologicheskiy universitet. 2022. S. 91–95. [in Russian]
Date of receipt: 27.10.2025
Approved after review: 20.11.2025
Accepted for publication: 14.11.2025