350 rub
Journal Achievements of Modern Radioelectronics №12 for 2025 г.
Article in number:
Testing the range of a wireless data transmission system radio channel
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700784-202512-12
UDC: 621.396.6; 621.396.96; 621.317.7
Authors:

V.V. Elesin1, A.A. Bondar2

1,2 MIREA – Russian University of Technology (Moscow, Russia)

1 vladimiroff927@mail.ru, 2 bondar_a@mirea.ru

Abstract:

Modern wireless data transmission technologies play a key role in various fields, including the Internet of Things (IoT), industrial automation, telemetry, and remote control systems. One of the popular solutions for organizing an inexpensive and fast radio communication system is the nRF24L01 (or nRF24L01+PA+LNA) modules operating at 2,4 GHz. However, when calculating the theoretical length of a radio channel for the design of such systems, it is important to take into account real factors that can significantly reduce the efficiency of data transmission.

The main tool for estimating the maximum length of a wireless radio channel is the Friis formula, which describes the attenuation of a signal in free space. However, in practice, the propagation of radio waves is influenced by many factors, including environmental losses, obstacles, and interference. As a result, the actual range is often significantly lower than the estimated range.

The purpose of this work is an experimental study of the data transmission range between two nRF24 modules using an integrated small-sized printed antenna and an external pin antenna, as well as a comparison of the results obtained with theoretical calculations using the Friis formula. The study analyzes the causes of discrepancies between theory and practice, including the impact of various types of losses.

Pages: 70-74
For citation

Elesin V.V., Bondar A.A. Testing the range of a wireless data transmission system radio channel. Achievements of modern radioelectronics. 2025. V. 79. № 12. P. 70–74. DOI: https://doi.org/10.18127/j20700784-202512-12 [in Russian]

References
  1. Bondar' A.A. Elesin V.V. Lokal'naya set' dlya obmena dannymi. Sb. trudov konferentsii «Radioinfokom-2024». [in Russian]
  2. George R., Mary T.A.J. Review on directional antenna for wireless sensor network applications. IET Communications. 2020. V. 14(5). P. 715–722.
  3. Men'shikov S.V., Vashchuk E.S. Osushchestvlenie programmirovaniya na platforme arduino: sposoby i vozmozhnosti ispol'zovaniya platy arduino uno. Izd-vo: Filial FGBOU VPO «Kuzbasskiy gosudarstvennyy tekhnicheskiy universitet imeni T.F. Gorbacheva» v g. Prokop'evske. 2022. [in Russian]
  4. Sandra S., Miguel G.-P., Carlos T., Jaime L. WLAN IEEE 802.11 a/b/g/n indoor coverage and interference performance study
  5. Khoroshaylova M.V., Sviridova I.V., Tsipina K.D. Rekonfiguriruemyy nizkoplotnostnyy dekoder dlya mnogourovnevykh besprovodnykh lokal'nykh setey. Radiotekhnika. 2023. T. 87. № 8. S. 94–99. DOI: https://doi.org/10.18127/ j00338486-202308-15 [in Russian]
  6. Yankovskiy N.A., Tatarnikova T.M. Otsenka effektivnosti algoritmov assotsiatsii i planirovaniya dlya peredachi chuvstvitel'nogo k zaderzhke trafika po niskhodyashchemu kanalu besprovodnykh setey. Uspekhi sovremennoy radioelektroniki. 2024. T. 78. № 8.
    S. 33–38. DOI: https://doi.org/10.18127/j20700784-202408-06 [in Russian]
  7. Serov S.A., Kulikov R.S., Petukhov N.I. Ispol'zovanie mnogoluchevogo rasprostraneniya sverkhshirokopolosnogo radiosignala dlya navigatsii vnutri pomeshcheniya. Radiotekhnika. 2022. T. 86. № 11. S. 109–114. DOI: https://doi.org/10.18127/j00338486-202211-17 [in Russian]
Date of receipt: 24.10.2025
Approved after review: 07.11.2025
Accepted for publication: 14.11.2025