350 rub
Journal Achievements of Modern Radioelectronics №11 for 2025 г.
Article in number:
Synthesis of conformal phased array antennas for ultra-wide-angle scanning
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700784-202511-09
UDC: 621.396.6
Authors:

K.S. Zaytsev1, O.V. Terekhin2, A.A. Vasin3

1–3 Moscow Aviation Institute (National Research University) (Moscow, Russia)

1 waz-raketa@yandex.ru

Abstract:

Phased array antennas (headlamps) are widely used due to the rapid electronic restructuring of the radiation pattern. However, classic flat headlamps are limited by the scanning sector, usually not exceeding ±60° from the normal to the surface, and have significantly worse characteristics at large beam deflection angles. All this leads to the fact that new ways are being sought to create ultra-wide-angle scanning antennas. From this point of view, the study of convex (conformal) headlamps is of particular interest. The purpose of the work is to analyze the principles of operation of convex headlamps with wide-angle scanning, to investigate various shapes of convex headlamps in terms of the possibility of providing the necessary directional characteristics, to consider approaches to the dynamic formation of the active region and to analyze various methods of placing headlight emitters on various convex surfaces.

Analytical expressions for estimating the directional coefficient of a convex headlight are presented, taking into account the directional pattern of a single element. A comparison of different types of convex headlamps by the criterion of the maximum directional coefficient has been performed. The condition for the formation of a dynamic active area of headlamps is formalized. The methods of emitter placement are analyzed: from arc and ring configurations to geodetic structures and projection placement methods. It is shown that the placement of headlight elements along the Fibonacci spiral is one of the most universal approaches for convex headlamps of arbitrary shape, which also allows for the expansion of the operating frequency band and minimizing the number of headlight emitters. The results obtained can be used in the design of wide-angle radar/AFAR radar systems, satellite terminals and on-board antenna systems of aircraft and other mobile objects.

Pages: 81-100
For citation

Zaytsev K.S., Terekhin O.V., Vasin A.A. Synthesis of conformal phased array antennas for ultra-wide-angle scanning. Achievements of modern radioelectronics. 2025. V. 79. № 11. P. 81–100. DOI: https://doi.org/10.18127/j20700784-202511-09 [in Russian]

References
  1. Li M., Chen S.-L., Liu Y., Guo Y.J. Wide-Angle Beam Scanning Phased Array Antennas: A Review. IEEE Open Journal of Antennas and Propagation, 2023. DOI: 10.1109/OJAP.2023.3296636.
  2. AN/APG-68. URL: https://www.deagel.com/Components/ANAPG-68/a001560
  3. Goshin G.G. Ustroystva SVCh i antenny. Chast' 2. Antenny. Ucheb. posobie. Tomsk: Tomskiy gosudarstvennyy universitet sistem upravleniya i radioelektroniki. 2012. [in Russian]
  4. Litun V.I., Mitrokhin V.N. Osobennosti proektirovaniya kupol'nolinzovykh antenn. Vestnik MGTU im. N.E. Baumana. Ser. Priborostroenie. 2012. № 2. S. 87–100. [in Russian]
  5. Lei J., Yang J., Chen X., Zhang Z., Fu G., Hao Y. Experimental demonstration of conformal phased array antenna via transformation optics. Scientific Reports. 2018. V. 8. Art. 3807. DOI: 10.1038/s41598-018-22165-4.
  6. Voskresenskiy D.I., Ponomarev L.I., Filippov V.S. Vypuklye skaniruyushchie antenny (osnovy teorii i metody rascheta). M.: Sov. radio. 1978. [in Russian]
  7. Josefsson L., Persson P. Conformal array antenna theory and design. Piscataway (NJ), Hoboken (N.J.): IEEE press, Wiley-Interscience, cop. 2006. XIV. (IEEE press series on electromagnetic wave theory).
  8. Busel M.O., Kalinin A.A., Romanovich A.G. Sintez konformnoy antennoy reshetki s proizvol'nym raspolozheniem izluchateley. Vestnik Voennoy akademii Respubliki Belarus'. 2016. № 2. S. 87–94. [in Russian]
  9. Ustroystva SVCh i antenny. Proektirovanie fazirovannykh antennykh reshetok: Ucheb. posobie dlya vuzov. Pod red. D.I. Voskresenskogo. Izd. 4-e, pererab. i dop. M.: Radiotekhnika. 2012. [in Russian]
  10. Zavadskiy S.A., Yurtsev O.A. Vliyanie vzaimodeystviya mezhdu izluchatelyami na parametry vypukloy antennoy reshetki s dvoynoy kriviznoy. Doklady BGUIR. 2019. № 6 (124). S. 5–11. [in Russian]
  11. Hansen R.C. Phased Array Antennas : Second Edition. Hoboken, NJ : John Wiley & Sons. 2009. 
  12. Tomasic B., Turtle J., Liu Sh. The geodesic sphere phased array antenna for satellite communication and air/space surveillance. Part 1. Defense Technical Information Center (DTIC). 2004.
  13. Pelham T. Analysis of Conformal Antenna Array Design using Beamforming methods and on-platform aperture modeling. University of Bristol, Department of Electrical and Electronic Engineering. Bristol. 2018.
  14. Jiang H., Rao N., Chen X., Zhou J., Qiu C., Zhai W., Hao Z. Study on Clutter Model and Characteristics of Airborne Radar with Parabolic Conformal Phased Array. Journal of Electronic Science and Technology. 2016. V. 14. № 1. P. 49–53.
  15. Indenbom M.V. Issledovanie kharakteristik sfericheskikh osesimmetrichnykh fazirovannykh antennykh reshetok s uchetom vzaimodeystviya shchelevykh izluchateley. Zhurnal radioelektroniki. 2020. №  9. DOI: 10.30898/1684–1719.2020.9.2. [in Russian]
  16. Chan A.K., Ishimaru A., Sigelmann R.A. Equally Spaced Spherical Arrays. Radio Science. 1968. V. 3. № 5. P. 401–403.
  17. Franek O., Pedersen G.F. Spherical horn array for wideband propagation measurements. IEEE Transactions on Antennas and Propagation. 2011. V. 59. № 7. P. 2654–2660.
  18. Hu Z., Tang X., Lu C., Zhang J. Design and Simulation of a Conformal Phased Array Antenna. Advances in Computer Science Research (3rd International Conference on Mechatronics Engineering and Information Technology). 2019. V. 87. P. 849–853.
  19. Sun D., Shen R., Yan X. A Broadband Conformal Phased Array Antenna on Spherical Surface. International Journal of Antennas and Propagation. 2014. V. 2014. P. 5. DOI: https://doi.org/10.1155/2014/206736.
  20. Pfeiffer C., Massman J. An UWB Hemispherical Vivaldi Array. IEEE Transactions on Antennas and Propagation. 2022. V. 70. № 10. DOI 10.1109/TAP.2022.3177482.
  21. Hoffman M. Conventions for the Analysis of Spherical Arrays. IEEE Transactions on Antennas and Propagation. 1963. V. AP-11. № 4. P. 390–393.
  22. Elliot P.G. Conformal Array Beam Synthesis and Taper Efficiency Comparisons. Proceedings of the Antennas, Radar, and Wave Propagation (ARP) Conference. 2005.
  23. Vogel H. A better way to construct the sunflower head. Mathematical Biosciences. 1979. T. 44. № 3–4. S. 179–189.
  24. Strizhkov V.A. Osobennosti povedeniya fazirovannykh antennykh reshetok pri shirokougol'nom i sverkhshirokougol'nom skanirovanii. Antenny. 2006. № 6. S. 3–16. [in Russian]
Date of receipt: 17.10.2025
Approved after review: 29.10.2025
Accepted for publication: 31.10.2025