A.G. Lukin1, D.S. Demin2, A.S. Petrov3
1–3 JSC "NPO Lavochkina" (Khimki, Russia)
1 timon01.tt@gmail.com, 2 dends@list.ru, 3 aspetr50@mail.ru
In recent years, both domestically and internationally, active research and development efforts have been undertaken to advance missions involving small spaceborne synthetic aperture radars (SAR). These radars are characterized by reduced mass and dimensional parameters, as well as lower power consumption from onboard power sources. Naturally, small radars have more limited functional capabilities compared to larger ones. However, they offer a significant advantage: the possibility of launching multiple units into orbit simultaneously using a single launch vehicle. As a result, large clusters of such satellites can be formed, which, in turn, enhance the overall system's performance. Moreover, the loss of one or even several small satellites would not disrupt system functionality as severely as the failure of just a single large one.
Small SARs exhibit a high degree of variability in their design and configuration, necessitating a rapid, efficient, and accurate assessment of their characteristics to define the optimal radar configuration. To address this need, algorithms and software have been developed to perform such assessments using a personal computer.
The methodology, implemented within the MATLAB software package, automates computationally intensive evaluations of numerous system characteristics, which depend on a wide range of input parameters. This automation assists designers in solving the iterative problem of selecting the most optimal combination of parameters when developing spaceborne missions for small synthetic aperture radars. The computation of 35 dependencies of SAR output parameters on the elevation angle of the swath center, the antenna footprint on the Earth's surface under bidirectional scanning, and the point target response function, along with 2D and 3D animated imaging simulations, takes approximately 30 seconds.
Lukin A.G., Demin D.S., Petrov A.S. A priori parameters estimation of small spaceborne synthetic aperture radars using computers. Achievements of modern radioelectronics. 2025. V. 79. № 11. P. 53–59. DOI: https://doi.org/10.18127/j20700784-202511-06 [in Russian]
- Demin D.S., Makarov V.P., Samojlov S.Yu., Petrov A.S. Sovremennye zarubezhnye sistemy mini- i mikrosputnikovykh kosmicheskikh missij radioteleskopov s sintezirovannoj aperturoj RSA. Vestnik NPO imeni S.A. Lavochkina. 2023. № 3. S. 70–78. [in Russian]
- Petrov A.S., Prilutskij A.A., Volchenkov A.S. Metodika rascheta zavisimosti bazovykh parametrov kosmicheskikh radiolokatorov s sintezirovannoj aperturoj ot vysoty poleta i nakloneniya ploskosti orbity nositelya. Vestnik NPO imeni S.A. Lavochkina. 2018. T. 42. № 4. S. 80–89. [in Russian]
- Petrov A.S. Formirovanie oblika nizkoorbital'nykh kosmicheskikh sistem distantsionnogo zondirovaniya Zemli. Uspekhi sovremennoj radioelektroniki. 2022. T. 76. № 5. S. 26–41. DOI: https://doi.org/10.18127/j20700784-202205-02. [in Russian]
- Verba V.S., Neronskij L.B., Osipov I.G., Turuk V.E. Radiolokatsionnye sistemy zemleobzora. M.: Radiotekhnika. 2010. [in Russian]
- Gruzdov V.V., Kolkovskij Yu.V., Krishtopov A.V., Kudrya A.I. Novye tekhnologii zondirovaniya Zemli iz kosmosa. M.: Tekhnosfera. 2018. [in Russian]
- Aviatsionnye sistemy radiovideniya: Monografiya. Pod red. G.S. Kondratenkova. M.: Radiotekhnika. 2015. [in Russian]
- Radiolokatsionnye stantsii s tsifrovym sintezirovaniem apertury antenny. Pod red. V.T. Goryainova. M.: Radio i svyaz'. 1988. [in Russian]
- Radiolokatsionnye sistemy vozdushnoj razvedki, deshifrovanie radiolokatsionnykh izobrazhenij: Uchebnik dlya kursantov VVIA imeni N.E. Zhukovskogo. Pod red. L.A. Shkol'nogo. M.: Izd. VVIA im. prof. N.E. Zhukovskogo. 2008. [in Russian]
- Curlander J.C., McDonogh R.N. Synthetic aperture radar. Systems and signal processing. Wiley. 1991.
- Carrara W.G., Goodman R.S., Majewsky R.M. Spotlight synthetic aperture radar. Signal processing algorithms. Artech House. 1995.
- Cumming I.G., Wong F.H. Digital processing of synthetic aperture radar data. Artech House. 2005.
- D'yakonov V.P. MATLAB. Polnyj samouchitel'. M.: DMK Press. 2012. [in Russian]

