350 rub
Journal Achievements of Modern Radioelectronics №10 for 2025 г.
Article in number:
Methods сomputational and experimental assessment of the guaranteed communication distance between a ground control station and an UAV
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700784-202510-07
UDC: 621.371.31
Authors:

M.S. Shishkin1, D.M. Didenko2

1,2 JSC «AIRBURG» (Yekaterinburg, Russia)

1 Ural Federal University named after the first President of Russia B.N. Yeltsin (Yekaterinburg, Russia)

1 m.shishkin@air-burg.ru, 2 d.didenko@air-burg.ru

Abstract:

This article presents an analysis of existing analytical and empirical methods and models for assessing radio communication distance and highlights their limitations and shortcomings when applied to unmanned aerial systems. A comprehensive method is proposed for estimating the communication distance between a ground data terminal and the onboard communication equipment of unmanned systems with a specified availability factor. This method enables calculations (forecasts) for any communication parameters and radio wave propagation conditions. The paper also presents the results of an experimental evaluation of communication distance and compares them with the calculated results, confirming the validity of the calculations. The proposed method can be applied to the design of UAS communication systems, the planning of UAV flight missions, the development of certification standards for unmanned systems, and the assessment and optimization of UAV communication coverage areas to reduce the detection range of reconnaissance and monitoring equipment.

Pages: 49-59
For citation

Shishkin M.S., Didenko D.M.  Methods computational and experimental assessment of the guaranteed communication distance between a ground control station and an UAV. Achievements of modern radioelectronics. 2025. V. 79. № 10. P. 49–59. DOI: https://doi.org/10.18127/j20700784-202510-07 [in Russian]

References
  1. Cai G., Dias J., Seneviratne L. A survey of small-scale unmanned aerial vehicles: Recent advances and future development trends. Unmanned Systems. 2014. T. 2. S. 175–199.
  2. Valavanis K.P., Vachtsevanos G.J. Handbook of unmanned aerial vehicles. Springer Publishing Company, Incorporated. 2014.
  3. Zeng Y. et al. UAV Communications for 5G and beyond. John Wiley & Sons. 2020.
  4. Owaid S.A., Miry A.H., Salman T.M. Survey on UAV Communications: Systems, Communication Technologies, Networks, Application. University of Thi-Qar Journal for Engineering Sciences. 2023. T. 13. № 1. S. 136–145.
  5. Panchenko B.A. Tekhnicheskaya elektrodinamika i rasprostranenie radiovoln. Ekaterinburg: GOU VPO UGTU-UPI. 2005.
  6. Barton D.K. Radar equations for modern radar. Artech House. 2013.
  7. Rekomendatsiya MSE-R P.527-4. Elektricheskie kharakteristiki zemnoy poverkhnosti. Zheneva: ITU. 2018.
  8. Chernyy F.B. Rasprostranenie radiovoln. M.: Sov. radio. 1972. [in Russian]
  9. Shebakpol'skiy M.F. i dr. Optimizatsiya signal'no-kodovykh konstruktsiy dlya svyaznykh radiokanalov s glubokimi releevskimi zamiraniyami //Zhurnal radioelektroniki. 2009. № 9. S. 7–17. [in Russian]
  10. Hata M. Empirical formula for propagation loss in land mobile radio services. IEEE transactions on Vehicular Technology. 2013. T. 29. № 3. S. 317–325.
  11. Popoola S.I. et al. Standard propagation model tuning for path loss predictions in built-up environments. International Conference on Computational Science and Its Applications. Cham: Springer International Publishing. 2017. S. 363–375.
  12. RF Planning – Standard Propagation Model Tuning in Atoll. URL: https://www.techplayon.com/standard-propagation-model-tuning-in-atoll
  13. Volcano 5G. URL: https://www.siradel.com/volcano-5g-siradel-announces-enhanced-version-of-its-volcano-propagation-model
  14. ASSET Radio. URL: https://teocoaircom.com/asset-radio
  15. Atoll Overview. URL: https://www.forsk.com/atoll-overview
  16. RadioPlanner 3.0. URL: https://www.ctt-group.ru/radioplanner
  17. Shishakov K.V. i dr. Metodika rascheta radioliniy mezhdu dvumya antennami. Intellektual'nye sistemy v proizvodstve. 2016. № 3. S. 64–67. [in Russian]
  18. Škiljo M., Udženija M., Blažević Z. Axial Ratio of Quarter-and Half-wavelength Cloverleaf Antenna for Drone FPV Applications. 2023 International Conference on Software, Telecommunications and Computer Networks (SoftCOM). IEEE. 2023. S. 1–5.
  19. Rekomendatsiya MSE-R P.676-6. Zatukhanie v atmosfernykh gazakh. Zheneva: ITU. 2005.
  20. Hamada S.T. et al. Path Profile analysis of a LOS system using 3-D digital map. Nahrain University College of Engineering Journal. 2008. T. 11. № 1. S. 28–37.
  21. Postroenie profilya radiolinii. URL: https://www.micran.ru/tools/profile  [in Russian]
Date of receipt: 04.09.2025
Approved after review: 16.09.2025
Accepted for publication: 30.09.2025