350 rub
Journal Achievements of Modern Radioelectronics №1 for 2025 г.
Article in number:
Estimation of required hardware resources for symbol-spaced equalizers for use in troposcatter communication systems
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700784-202501-01
UDC: 621.396
Authors:

N.A. Vorobev1, V.I. Djigan2, P.V. Luferchik3

1,3 JSC «SPE «Radiosvyaz» (Krasnoyarsk, Russia)

2 National Research University «MIET» (Moscow, Russia)

1 vorobev_na@krtz.su, 2 djigan@org.miet.ru, 3 lpv@krtz.su

Abstract:

It is known that the signals in tropospheric digital communication systems is subject to the negative impact of inter-symbol interference caused by multipath propagation. That is why, adaptive equalizers are often used to remove the inter-symbol interference. Depending the architecture and the used adaptive algorithms, the equalizers have the different computational complexity. Since high computational complexity requires high hardware costs in the implementation of equalizers, it is desirable in the design to strive to reduce it. Therefore, there is a need to estimate the required hardware cost of different equalizer architectures. It is established that for the examined in this paper tropospheric scattering radio channel. So, it is sufficient to use Symbol Spaced Feed Backward equalizers, accordingly, it is required to estimate their computational complexity. The purpose of this paper is to estimate the required hardware cost of implementing Symbol Spaced Feed Backward equalizers for modems of tropospheric scattering communication systems. Estimates of the computational complexity of adaptive symbol rate feedback equalizers for an optimal number of weights equal to 50 are obtained. The results show that for the equalizer based on Least Mean Squares (LMS) algorithm it is required 402 real multipliers. At the same time for the equalizer based on the Recursive Least Squares (RLS) algorithm, constructed as a stabilized version of the fast (computationally efficient) RLS algorithm, requires 3346 such multiplications. Estimates of hardware costs for equalizers based on LMS algorithm and stabilized version of fast RLS algorithm at different number of weight coefficients obtained as a result of synthesis allow to estimate in the process of designing the expediency of application of those or other equalizers.

Pages: 7-16
For citation

Vorobev N.A., Djigan V.I., Luferchik P.V. Estimation of required hardware resources for symbol-spaced equalizers for use in troposcatter communication systems. Achievements of modern radioelectronics. 2025. V. 79. № 1. P. 7–16. DOI: https://doi.org/10.18127/ j20700784-202501-01 [in Russian]

References
  1. Qureshi S. Adaptive equalization. Proceedings of the IEEE. 1985. V. 73. № 9. P. 1349–1387.
  2. Dzhigan V.I. Adaptivnaya fil'tratsiya signalov: teoriya i algoritmy. M: Tekhnosfera. 2013. [in Russian]
  3. Vorob'ev N.A., Luferchik P.V., Shtro P.V., Bogatyrev E.V. Issledovanie kharakteristik nestatsionarnosti troposfernogo kanala svyazi. Ural Radio Engineering Journal. 2023. № 7(2). C. 123–136. [in Russian]
  4. Roda G. Troposcatter radio links. Artech House Publishers. 1988.
  5. Dal'nee troposfernoe rasprostranenie ul'trakorotkikh voln. Pod red. B.A. Vvedenskogo, M.A. Kolosova, A.I. Kalinina, Ya.S. Shifrina. M.: Sov. radio. 1965. [in Russian]
  6. Vorob'ev N.A., Luferchik P.V., Konev A.N., Chashchin D.V. Opredelenie optimal'nykh kharakteristik adaptivnogo ekvalayzera dlya primeneniya v sistemakh troposfernoy svyazi. Sovremennye problemy radioelektroniki: materialy KhKhIV Vseros. nauch.-tekhn. konf. s mezhdunar. uchastiem, posvyashchennoy 129-y godovshchine Dnya radio. Krasnoyarsk, 2024. S. 10–14. [in Russian]
  7. Vorob'ev N.A., Dzhigan V.I., Luferchik P.V., Shtro P.V. Otsenka effektivnosti primeneniya adaptivnykh ekvalayzerov c razlichnoy strukturoy v sistemakh troposfernoy svyazi. Uspekhi sovremennoy radioelektroniki. 2023. T. 77. № 12. S. 114–123. DOI: https://doi.org/10.18127/j20700784-202312-14. [in Russian]
  8. Dzhigan V.I. Osobennosti primeneniya RLS-algoritmov adaptivnoy fil'tratsii v ekvalayzerakh s drobnoy zaderzhkoy. Tsifrovaya obrabotka signalov. 2020. № 2. S. 3–12. [in Russian]
  9. Slock D.T.M., Kailath T. Numerically stable fast transversal filters for recursive least squares adaptive filtering. IEEE Trans. Signal Processing. 1991. V. 39. № 1. P. 92–114.
  10. Vorob'ev N.A., Dzhigan V.I., Luferchik P.V. Otsenka trebuemykh apparatnykh zatrat dlya ekvalayzerov na simvol'noy skorosti dlya modemov radiosistem troposfernoy svyazi. Trudy 8-y Vseross. nauch.-tekhnich. konf. «Sistemy svyazi i radionavigatsii» (AO «NPP «Radiosvyaz'», 12 – 14 noyabrya 2024 g.). g. Krasnoyarsk, Rossiya, 2024. S. 44–48. [in Russian]
  11. Realizatsiya bazovykh komponentov TsOS: Kompleksnyy umnozhitel'. URL: https://fpga- ystems.ru/articles/131/iotbcotdspcm.pdf [in Russian]
  12. Dubrovin V.T. Teoriya funktsiy kompleksnogo peremennogo (teoriya i praktika): Ucheb. posobie. Kazan': Kazanskiy gosudarstvennyy universitet. 2010. [in Russian]
  13. AMD Zynq 7000 SoCs. URL: https://www.amd.com/en/products/adaptive-socs-and-fpgas/soc/zynq-7000.html
  14. AMD Zynq Ultrascale+ MPSoCs. URL: https://www.amd.com/en/products/adaptive-socs-and-fpgas/soc/zynq-ultrascale-plus-mpsoc.html
Date of receipt: 02.12.2024
Approved after review: 14.12.2024
Accepted for publication: 09.01.2025