A.R. Ilchuk1, V.I. Merkulov2, D.V. Zakomoldin3
1 JSC «RPC «Istok» named after Shokin" (Fryazino, Moscow region, Russia)
2 JSC Vega Radio Engineering Corporation (Moscow, Russia)
3 Zhukov Air and Space Defence Academy (Tver, Russia)
1 arilchuk@istokmw.ru, 2 ilya-zagrebelnyi@mail.ru, 3 denjuga68@yandex.ru
Analysis of research conducted both in our country and abroad shows that one of the areas of aircraft development is work on the creation of high-speed aircraft (HSA). Currently, the developers' immediate goal is to create experimental models of aircraft and their power plants.
Trends in the development of aircrafts and analysis of the principles of construction of existing radars show that solving the problems of detecting and tracking aircraft is associated with a number of features determined by the nature of the trajectory of their movement, the values of speeds and the range of flight altitudes, which requires a more detailed consideration of these features, mainly at the stage of primary processing reflected signals.
Firstly, high flight speeds of HSA require that the detection of such objects occur at increased ranges. Secondly, when observing HSA, especially when using the mode of long-term coherent accumulation of reflected signals and using pulses of relatively short duration (a few microseconds), there is a “migration” of the target (reflected signal) along the range gates. Thirdly, analysis of changes in the parameters of the signal reflected from HSA shows that even with a rectilinear uniform flight of aircraft, provided that the target and the carrier do not move with a relative course equal to zero, components of the radial acceleration of the target and its derivative appear.
These circumstances necessitated the consideration of radar surveillance of HSA at the stage of primary processing of reflected signals.
Ilchuk A.R., Merkulov V.I., Zakomoldin D.V. Problems of interception of high-speed aircrafts maneuvering according to complex laws. Part 3. Features of radar surveillance. Achievements of modern radioelectronics. 2024. V. 78. № 9. P. 5–16. DOI: https://doi.org/10.18127/ j20700784-202409-01 [in Russian]
- Speier R.H., Nacouzi G., Lee C.A., Moore R.M. Hypersonic missile nonproliferation: Hindering the spread of a new class of weapons. Santa Monica, CA: RAND Corporation. 2017. P. 8–15.
- Van Wie D.M. Hypersonics: Past, present, and potential future. John Hopkins APL Technical Digest. 2021. V. 35. № 4. P. 335–341.
- Yibo D., Yue X., Chen G., Si J. Review of control and guidance technology on hypersonic vehicle. Chinese Journal of Aeronautics. 2022. V. 35(7). P. 1–18.
- Verba V.S., Merkulov V.I., Zakomoldin D.V., Likhachev V.L. Problemy perekhvata vysokoskorostnykh letatel'nykh apparatov, manevriruyushchikh po slozhnym zakonam. Ch. 2. Analiz traektorij poleta zarubezhnykh letatel'nykh apparatov. Uspekhi sovremennoj radioelektroniki. 2024. T. 78. № 4. S. 5–14. [in Russian]
- Akhiyarov V.V., Nefedov S.I., Nikolaev A.I. i dr. Radiolokatsionnye sistemy. Pod red. A.I. Nikolaeva. M.: Izd-vo MGTU im. N.E. Baumana. 2016. [in Russian]
- Berdyshev V.P., Garin E.N., Fomin A.N. i dr. Osnovy postroeniya radiolokatsionnykh stantsij radiotekhnicheskikh vojsk. Krasnoyarsk: Sibirskij federal'nyj universitet. 2021. [in Russian]
- Dudnik P.I., Il'chuk A.R., Tatarskij B.G. Mnogofunktsional'nye radiolokatsionnye sistemy: Ucheb. posobie dlya vuzov. Pod red. B.G. Tatarskogo. M.: Drofa. 2007. [in Russian]
- Verba V.S., Merkulov V.I., Zakomoldin D.V. Problemy perekhvata vysokoskorostnykh letatel'nykh apparatov, manevriruyushchikh po slozhnym zakonam. Ch. 1. Osobennosti primeneniya vysokoskorostnykh letatel'nykh apparatov, uslozhnyayushchikh ikh pe-rekhvat // Uspekhi sovremennoj radioelektroniki. 2024. T. 78. № 3. S. 5–12. [in Russian]
- Verba V.S. Aviatsionnye kompleksy radiolokatsionnogo dozora i navedeniya. Printsipy postroeniya. Problemy razrabotki i osobennosti funktsionirovaniya. M.: Radiotekhnika. 2014. [in Russian]
- Wei L.Y., Gliponeo J., Dilpreet S., et al. Detecting and tracking hypersonic glide vehicle: A cybersecurity-engineering analysis of academic literature. Proceedings of the 18th International Conference on Cyber Warfare and Security. 2023. P. 189–198.
- Cameron L.T., Wright D. Modeling the performance of hypersonic boost-glide missiles. Science & Global Security. 2020. V. 28. № 3. P. 135–170.
- Vasin V.A., Vlasov I.B., Egorov Yu.M. i dr. Informatsionnye tekhnologii v radiotekhnicheskikh sistemakh: Ucheb. posobie dlya vuzov. Pod red. I.B. Fedorova. Izd. 2-e, pererab. i dop. M.: Izd-vo MGTU im. N.E. Baumana. 2011. [in Russian]
- Fedorov I.B., Slukin G.P., Nefedov S.I. Perspektivy primeneniya tekhnologii dlitel'nogo kogerentnogo nakopleniya v dozornykh radiolokatsionnykh stantsiyakh. Vestnik MGTU. Ser. Priborostroenie. 2005. Spets. vypusk. S. 112–132. [in Russian]
- Grant M.J., Antony T. Rapid indirect trajectory optimization of a hypothetical long range weapon system. AIAA Atmospheric Flight Mechanics Conference. 2016.
- Merkulov V.I. Kontseptual'nyj podkhod k upravleniyu informativnost'yu radiolokatsionnykh system. Uspekhi sovremennoj radioelektroniki. 2011. № 11. S. 39–40. [in Russian]
- Il'chuk A.R. Obnaruzhenie radiolokatsionnykh signalov so sluchajnym znacheniem deviatsii chastoty. Radiotekhnika. 2009. №6. [in Russian]
- Il'chuk A.R. Obnaruzhenie manevriruyushchikh vozdushnykh ob''ektov v kogerentno-impul'snykh RLS na osnove analiza otsenok doplerovskogo smeshcheniya chastoty otrazhennogo signala. Informatsionno-izmeritel'nye i upravlyayushchie sistemy. 2008. № 11. [in Russian]
- Patent № 2262122 RF. Sistema obnaruzheniya radiolokatsionnykh signalov. A.R. Il'chuk, V.I. Merkulov, O.F. Samarin i dr. Opubl. 10.10.2005. Byul. № 28. [in Russian]
- Il'chuk A.R., Sinitsyn I.A., Tsvetkov O.V. Algoritmy obrabotki signalov, otrazhennykh ot vysokoskorostnykh letatel'nykh apparatov, v bortovykh radiolokatsionnykh sistemakh. Informatsionno-izmeritel'nye i upravlyayushchie sistemy. 2014. T. 12. № 7. S. 16–23. [in Russian]
- Xie Y., Li X., Shen F., et al. Influence of plasma sheath’s velocity field on ISAR imaging of hypersonic target. Remote sensing. 2022. № 14.
- Khomkin A.L., Shumikhin A.S. Plazmennaya chastota, parabolicheskie traektorii i provodimost' neideal'noj polnost'yu ionizovannoj plazmy. Teplofizika vysokikh temperatur. 2020. T. 58. № 3. S. 323–326. [in Russian]
- Bian Z., Li J., Guo L. Simulation and feature extraction of the dynamic electromagnetic scattering of a hypersonic vehicle covered with plasma sheath’s. Remote sensing. 2020. V. 12. № 17.
- Ma Z., Zeng Y., Deng B., et al. Echo attenuation characteristics of a vehicle covered with the inhomogeneous plasma sheath in terahertz band. Tenth International Symposium on Ultrafast Phenomena and Terahertz Waves. 2021. V. 11909.
- Dai Y., Wu Y., Zhou F., Barnard K. Attentional local contrast networks for infrared small target detection. IEEE Transactions on Geoscience and Remote Sensing. 2021. V. 59. № 11. P. 9813–9824.
- Kondratyuk E. Issledovaniya, provodimye v SShA v oblasti sozdaniya giperzvukovykh letatel'nykh apparatov. Zarubezhnoe voennoe obozrenie. 2013. № 2. [in Russian]