350 rub
Journal Achievements of Modern Radioelectronics №6 for 2024 г.
Article in number:
The main directions of enhancement of digital antenna arrays
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700784-202406-07
UDC: 621.396.677
Authors:

V.V. Zadorozhnyy1, A.Yu. Larin2, A.V. Litvinov3, A.S. Mit’kin4

1–4 FSUE «RNIIRS» (Rostov-on-Don, Russia)

1 vladimir@resonance.ru

Abstract:

The development of modern radio electronic systems causes an increase in the requirements for the parameters of antenna devices (AU) and causes the transition from previously used mirror antennas and passive phased array antennas (FAA) to active FAA (AFAA), the considerable advantage of which is a significant reduction in energy losses of transmitted and received signals by reducing the distance of the low-noise amplifier input and output of power amplifier to the antenna element. Further development of the AU is the transition from AFAA with analog beamforming to digital antenna arrays (DAR) with digital beamforming, the advantages of which are due to the possibility of forming multibeam receiving and transmitting radiation patterns  with independent control of the direction and shape of the beams, as well as the possibility of flexible change of operating modes.

The use of a DAR with two-dimensional electronic scanning provides a significant increase in the efficiency of radio-electronic systems. Thus, their use in radar provides a gain in the efficiency of using the time, energy, frequency and spatial resources of radar with CAR up to 13 times compared with radar with passive FAA and AFAA with one-dimensional scanning.

The disadvantages of the DAR are the high cost and increased energy consumption due to the installation of active elements in each transceiver channel, as well as the long time required to create new products, associated with a large amount of software and a complex structure for building a CAR. To overcome these disadvantages, manufacturers of antenna arrays and developers of the radio-electronic element base are creating new technical solutions.

The main directions of development of technologies for the production of DAR functional devices that reduce the cost and reduce the time needed to create new products are shown: the development of common modules that allow you to create scalable DAR, increasing the integration of microwave monolithic integrated circuits with the placement of the maximum number of transceiver channels on one chip, increasing the integration of ASIC, including ADCs, DACs and digital signal processing devices, increasing the clock frequencies of digital functional nodes, as well as the development of circuit solutions for building nodes with low energy consumption.

Pages: 62-78
For citation

Zadorozhnyy V.V., Larin A.Yu., Litvinov A.V., Mit’kin A.S. The main directions of enhancement of digital antenna arrays. Achievements of modern radioelectronics. 2024. V. 78. № 6. P. 62–78. DOI: https://doi.org/10.18127/j20700784-202406-07 [in Russian]

References
  1. Zadorozhny`j V.V., Larin A.Yu., Ovodov O.V., Xristianov V.D. Optimizaciya priemny`x cifrovy`x antenny`x reshetok. Antenny`. 2012. № 9. S. 24–31.
  2. Zadorozhny`j V.V. Obobshhenny`j pokazatel` e`ffektivnosti ispol`zovaniya antennoj sistemy` v sostave RLS. Antenny`. 2023. № 4. S. 21–31.
  3. Kol`czov Yu.V. Antenny`e reshetki v e`poxu 5G. Chast` 1. Antenny`. 2022. № 5. S. 5–29.
  4. Kol`czov Yu.V. Antenny`e reshetki v e`poxu 5G. Chast` 2. Perspektivny`e razrabotki. Antenny`. 2022. № 6. S. 5–34.
  5. Gus`kov Yu.N., Zhiburtovich N.Yu. Osnovny`e napravleniya konstruirovaniya bortovy`x radiolokacionny`x sistem i vy`bor e`lementnoj bazy`. Radiotexnika. 2023. № 5. S. 93–101.
  6. DARPA Transitions next-generation phased array system to support future defense R&D. Microwave Journal. 2021. Sept. 1.
  7. McMahon B., Lapierre R., MacCabe A., Campbell N., et al. ORCHESTRA: Optimizable RF converged hardware expression of a scalable transmit/receive architecture. IEEE Int. Symp. PAST. 8–13 July 2018. P. 2139–2140.
  8. Hancock T. Millimeter Wave Digital Arrays (MIDAS). 5th NSF mmW RCN Workshop. January 29. 2019.
  9. Gabrie`l`yan D.D., Zvezdina M.Yu., Sinyavskij G.P. Primenenie vy`sokoimpedansny`x poverxnostej dlya sozdaniya nizkoprofil`ny`x antenn. Antenny`. 2024. № 1. S. 6–25.
  10. Kas`yanov A.O., Obuxovecz V.A. Razrabotka mikropoloskovy`x otrazhatel`ny`x antenny`x reshetok dlya fokusirovki i polyarizacionnoj fil`tracii na SVCh. Antenny`. 2024. № 1. S. 33–39.
  11. Larin A.Yu., Litvinov A.V., Mishhenko S.E., Pomy`sov A.S., Shaczkij V.V. Metod kompensacii pomex v ploskoj antennoj reshetke. Sb. trudov XII mezhdunar. nauchno-texnich. konf. «Radiolokaciya, navigaciya, svyaz`». Voronezh. 2013. T. 3. S. 1731–1740.
  12. Baranov I.V., Zadorozhny`j V.V., Larin A.Yu. Postroenie mnogoe`lementnoj adaptivnoj cifrovoj antennoj reshetki. Sb. trudov XXII mezhdunar. nauchno-texn. konf. Voronezh, 2016. T. 2. S. 881–888.
  13. Zadorozhny`j V.V., Larin A.Yu., Litvinov A.V., Pomy`sov A.S. Metod obuzheniya diagrammy` napravlennosti cifrovoj antennoj reshetki. Uspexi sovremennoj radioe`lektroniki. 2013. № 8. S. 94–100.
  14. Patent Rossii 2595447. Sposob uglovogo sverxrazresheniya v priemny`x cifrovy`x antenny`x reshetkax / Zadorozhny`j V.V., Vinnik L.V., Larin A.Yu., Mishhenko S.E. 2020. Byul. № 4.
  15. Shaczkij N.V., Mishhenko S.E. Amplitudno-fazovy`j sintez cifrovoj antennoj reshetki s uchetom fluktuacij amplitudnogo raspredeleniya i otkazov otdel`ny`x e`lementov. Antenny`. 2014. № 6. S. 15–19.
  16. Patent US 8810448. G01S 7/03. Modular architecture for scalable phased array radars / Ellsworth J.R., Martinez M.P., et al. Aug. 19. 2014.
  17. Shahramian S., Holyoak M., Singh A., et al. A fully integrated scalable W-Band phased-array module with integrated antennas, self-alignment and self-test. IEEE Int. Solid-State Circuits Conf. 11–15 Feb. 2018. P. 74–76.
  18. Chaloun T., Boccia L., Arnieri E., Fischer M., et al. Electronically steerable antennas for future heterogeneous communication networks: review and perspectives. IEEE J. Of Microwaves. Oct. 2022. V. 2. P. 545–581.
  19. Kodak U., Rupakula B., Zihir S., Rebeiz G.N. A 62 GHz Tx/Rx 2×128 Element dual-polarized dual-beam wafer-scale phased-array transceiver with minimal reticle-to-reticle stitching. IEEE Radio Freq. Integr. Circuits Symp. 2–4 June 2019. P. 335–338.
  20. Valdes-Garcia A., Sadhu B., Gu X., Reynolds S., et al. Circuit and antenna-in-package innovations for scaled mm wave 5G phased array modules. IEEE Custom Integrated Circuits Conf. 8–11 Apr. 2018. P. 1–8.
  21. Kushner L.J., Sliech K.W., Flewelling G.M. et al. The MATRICs RF-FPGA in 180nm SiGe-on-SOI BiCMOS. IEEE Radio Frequency Integrated Circuits Symp. 17–19 May 2015. P. 283–286.
  22. Qorvo. QPF0219 – Data Sheet.
  23. Sikri D., Jayasuriya R.M. Multi-beam phased array with full digital beamforming. Microwave Journal. 2019. Digital edition. April 11.
  24. Analog Devices. ADMVM8818 – Data sheet.
  25. Wagner E., LaRocca T., Verderber M., Rezende C. A 31-tap reconfigurable analog fir filter using heterogeneously integrated polystrata delay-lines. IEEE Microwave and Wireless Components Letters. V. 32. No. 6. June 2022. P. 648–651.
  26. Hari S., Ellington C.J., Floyd D.F. A reflection-mode n-path filter tunable from 6 to 31 GHz. IEEE Journal of Solid-state Circuits. July 2023. V. 58. No. 7. P. 1973–1985.
  27. Druzin S.V., Gorevich B.N. Metodika formirovaniya oblika radiolokacionny`x stancij perspektivnoj sistemy` vooruzheniya vojskovoj PVO. Vestnik Koncerna VKO «Almaz-Antej». 2020. № 2. S. 6–31.
  28. Qorvo. QPA0007 – Data Sheet.
  29. Zadorozhny`j V.V. Sposob postroeniya masshtabiruemoj sistemy` cifrovogo diagrammoobrazovaniya dlya cifrovy`x antenny`x reshe­tok. T-comm: Telekommunikacii i Transport. 2023. Vy`p. 12. S. 22–28.
  30. Bailleul P.K. A new era in elemental digital beamforming for spaceborne communications phased arrays. Proceedings of the IEEE. V. 104. No. 3. March. 2016. P. 623–632.
  31. Analog Devices. AD9088 – Data sheet.
  32. AMD. ZU49DR – Data sheet.
  33. Satixfy Prime Digital Beam Former ASIC – Data sheet.
  34. McSpadden J., Kushner L.J., Milne J. et al. MIDAS wideband mmw digital tile. IEEE Int. Symp. PAST. 11–14 Oct. 2022. P. 1–6.
  35. Ponomarev L.N., Stepanenko V.I. Skaniruyushhie mnogochastotny`e sovmeshhenny`e antenny`e reshetki. M.: Radiotexnika. 2009. 329 s.
  36. Kindt R., Pickles W. Ultrawideband all-metal flared-notch array radiator. IEEE Trans. AP. Nov. 2010. No. 11. R. 3568–3575.
  37. Chang J., Walsh R., Afiouni F. et al. Millimeter wave digital arrays (MIDAS) TA2: millimeter-wave scalable unconstrained broadband arrays (MMW SCUBA). IEEE Int. Symp. on Phased Array Systems & Technology (PAST). 11–14 Oct. 2022. P. 1–4.
  38. Cooley M., Essman S., Quade S., Geibel S., et al. Planar-fed folded notch (PFFN) arrays: A novel wideband technology for multi-function active electronically scanning arrays (AESAs). IEEE Int. Symp. Phased Array Systems. 18–21 Oct. 2016. P. 1–6.
  39. Patent Rossii № 2730111. Sposob postroeniya shirokopolosnoj antennoj reshetki / Zadorozhny`j V.V., Larin A.Yu., Chikov N.I. i dr. 2020. Byul. № 23.
  40. Logan J.T., Kindt R.W., Lee M.Y., Vouvakis M.N. A New Class of Planar Ultrawideband Modular Antenna Arrays With Improved Bandwidth. IEEE Trans. on AP. V. 66. No. 2. Feb. 2018. P. 692–701.
  41. Shumov A.V., Nefedov S.I., Bikmetov A.R. Koncepciya postroeniya radiolokacionnoj stancii na osnove e`lementov radiofotoniki // E`lektron. zhurn. MGTU im. N.E`. Baumana. 2016. № 5. S. 41–65.
  42. Zadorozhny`j V.V., Larin A.Yu., Trekin A.S. Postroenie raspredelitel`noj sistemy` mnogoe`lementny`x AFAR na osnove analogovy`x volokonno-opticheskix linij svyazi. Radiotexnika. 2014. № 8. S. 106–109.
  43. Oewaves. Advanced opto-electronic oscillator. Ultra-Low Phase Noise Microwave Signal Source Module. – Data Sheet.
  44. Reza M., Serafino G., Otto T., et al. Design and performance estimation of a photonic integrated beamforming receiver for scan-on-receive synthetic aperture radar. Journal of lightwave technology. V. 39. No. 24. December 15. 2021. P. 7588–7599
  45. Chatterjee M., Palla C., Fiamanya E., Legate S., et al. Design and development of PhLEXSAT – a flexible photo-digital communication payload for very high throughput satellites. Proc. SPIE Int. Conf. on Space Optics – ICSO. Oct. 2022. P. 1–11.
  46. Ghelfi1 P., Laghezza1 F., Scotti1 F., et al. A fully photonics-based coherent radar system. Nature. 2016. March. P. 341–345.
  47. Zajcev D.F. i dr. Pervaya radiofotonnaya fazirovannaya antennaya reshetka. Radiotexnika. 2021. № 4. S. 153–164.
Date of receipt: 24.04.2024
Approved after review: 07.05.2024
Accepted for publication: 22.05.2024