350 rub
Journal Achievements of Modern Radioelectronics №5 for 2024 г.
Article in number:
Problems of management of large density groups of UAVs
Type of article: overview article
DOI: https://doi.org/10.18127/j20700784-202405-08
UDC: 629.7.058
Authors:

V.S. Verba1, V.I. Merkulov2, D.A. Milyakov3

1–3 JSC «Concern «Vega» (Moscow, Russia)

1 vvs.msk@gmail.com, 2 ilya zagrebelnyi@mail.ru, 3 from_fn@mail.ru

Abstract:

The use of large dense groups of UAVs in solving economic and military problems is increasingly used. When solving these problems, it is necessary to form managements that ensure: assemble the group with the construction of the required topology; management of each UAV in the framework of solving a common problem and preventing collisions in a group. The solution of these problems can be obtained on the basis of two approaches. The first – the traditional one – is based on the consideration of the UAV group as an aggregate of individual participants, for each of which management is formed, providing both the solution of the common task and the prevention of collisions within the group. The second – fundamentally new – is based on the consideration of a group of UAVs as a system with distributed parameters. Preliminary studies have shown the possibility of using this approach to solving the problem of managing large groups of UAVs. However, to determine all the possibilities of this approach, additional theoretical and applied research is required.

Pages: 60-70
For citation

Verba V.S., Merkulov V.I., Milyakov D.A. Problems of management of large density groups of UAVs. Achievements of modern radioelectronics. 2024. V. 78. № 5. P. 60–70. DOI: https://doi.org/10.18127/j20700784-202405-08 [in Russian]

References
  1. Popov I.M., Hamzatov M.M. Vojna budushchego. Konceptual'nye podhody i prakticheskie vyvody. M.: Kuchkovo pole. 2017. 832 s.
  2. Sovremennoe sostoyanie i perspektivy razvitiya bespilotnyh aviacionnyh sistem XXI veka. Analiticheskij obzor po materialam zarubezhnyh informacionnyh istochnikov. Pod red. E.A. Fedosova. M. 2012.
  3. Kompleksy s bespilotnymi letatel'nymi apparatami. Kn. 1. Principy postroeniya i osobennosti primeneniya kompleksov s BLA. Pod red. V.S. Verby i B.G. Tatarskogo. M.: Radiotekhnika. 2016. 512 s.
  4. Verba V.S., Merkulov V.I. Bespilotnye letatel'nye apparaty. Roj: za i protiv. Radioehlektronnye tekhnologii. 2017. № 5. S. 42–45.
  5. Kalyaev I.A., Gajduk A.R., Kapustyan S.G. Modeli i algoritmy kollektivnogo upravleniya v gruppah robotov. M.: Fizmatlit. 2009. 280 s.
  6. Moiseev V.S. Gruppovoe primenenie bespilotnyh letatel'nyh apparatov: Monografiya. Kazan': Redakcionno-izdatel'skij centr «SHkola». 2017. 572 s.
  7. SPH Engineering Centralized Drone Management System http://www.sph-engineering.com/, UgCS Centralized drone management https://www.ugcs.com).
  8. Samodov I.O., Dmitriev D.A. Sintez algoritma upravleniya gruppoj bespilotnyh leta-tel'nyh apparatov s liderom. Aehrokosmicheskij nauchnyj zhurnal. MGTU im. N.EH. Baumana. EHlektron. zhurn. 2015. № 4. S. 15–24. DOI: 10.7463/aersp.0415.0813298.
  9. Andrew Sutton, Barıs Fidan, Dirk van der Walle. Hierarchical UAV Formation Control for Cooperative Surveillance. Proceedings of the 17th World Congress The International Federation of Automatic Control Seoul, Korea. 2008. July 6–11. P. 12087–12092.
  10. HuZhi-wei, LiangJia-hong, ChenLing, WuBing. A Hierarchical Architecture for Formation Control of Multi-UAV. Procedia Engineering. 2012. V. 29. P. 3846–3851.
  11. Har'kov V.P., Merkulov V.I. Sintez algoritma ierarhicheskogo upravleniya gruppoj BLA. Informacionno-izmeritel'nye i upravlyayushchie sistemy. 2012. № 8. S. 61–67.
  12. Wei Meng, Zhirong He, Rong Su, Ahmad Reza Shehabinia, Liyong Lin, Rodney Teo, Lihua Xie. Decentralized Control of Multi-UAVs for Target Search, Tasking and Tracking. Proceedings of the 19th World Congress The International Federation of Automatic Control. Cape Town. South Africa. 2014. August 24–29. P. 10048–10053.
  13. Shankarachary Ragi, Edwin K.P. Chong. Decentralized Guidance Control of UAVs with Explicit Optimization of Communication. Journal of Intelligent & Robotic Systems. January 2014. V. 73. Is. 1–4. P. 811–822.
  14. Nathan Michael Paczan, Michael John Elzinga, Raphael Hsieh, Luan Khai Nguyen. Collective unmanned aerial vehicle configurations. US20160378108A1. US Application. Current Assignee: Amazon Technologies Inc., Priority date 2015-02-19.
  15. Merkulov V.I., Har'kov V.P., SHamarov N.N. Optimizaciya kollektivnogo upravleniya gruppoj bespilotnyh letatel'nyh apparatov. Informacionno-izmeritel'nye i upravlyayushchie sistemy. 2012. № 7. S. 3–8.
  16. Controlling unmanned aerial vehicles as a flock to synchronize flight in aerial displays. US20140249693A1. US Application. Inventor: James Alexander Stark, Clifford Wong, Robert Scott Trowbridge. Current Assignee: Disney Enterprises Inc. Priority date: 2013-02-15.
  17. Merkulov V.I., Milyakov D.A., Samodov I.O. Optimizaciya algoritma gruppovogo upravleniya bespilotnymi letatel'nymi apparatami v sostave lokal'noj seti. Izv. YUFU. Tekhnicheskie nauki. 2014. № 12(161). S. 157–166.
  18. Buryj A.S., Fomichev I.D. Mul'tiagentnye modeli upravleniya gruppami avtonomnyh letatel'nyh apparatov [EHlektronnyj resurs].. Informacionno-ehkonomicheskie aspekty standartizacii i tekhnicheskogo regulirovaniya: Nauchnyj internet zhurnal. 2013. № 2(12).
  19. Amelin K.S., Granichin O.N. Mul'tiagentnoe setevoe upravlenie gruppoj legkih BPLA. Nejrokomp'yutery: razrabotka, primenenie. 2011. № 6. S. 64–72.
  20. Abrosimov V.K. Voprosy formalizacii traektorij dvizheniya stai i roya ob"ektov upravleniya. XII Vserossijskoe soveshchanie po problemam upravleniya (VSPU-2014). Moskva 16–19 iyunya 2014 g. S. 1922–1934.
  21. Leonov A.V., CHaplyshkin V.A. Seti FANET. Omskij nauchnyj vestnik. 2015. № 3(143). S. 297–301.
  22. Yuri K. Lopes, Stefan M. Trenkwalder, André B. Leal, Tony J. Dodd, Roderich Groß. Supervisory control theory applied to swarm robotics. Swarm Intell (2016) 10:65–97. DOI 10.1007/s11721-016-0119-0. http://link.springer.com/article/10.1007%2Fs11721-016-0119-0.
  23. Barnes L.E. A potential field based formation control methodology for robot swarms (2008). Graduate School Theses and Dissertations. http://scholarcommons.usf.edu/etd/131.
  24. Ruoxin Shi, Lifen Liu, Shuandao Li, and Jiang Wu. Command and Control Configuration Based on Service Reconfiguration for Unmanned Aircraft Systems. Proceedings of 2016 IEEE Chinese Guidance, Navigation and Control Conference. 2016. August 12–14. Nanjing. China. P. 1997–2000.
  25. Dunlap R.D. The evolution of a distributed command and control architecture for semiautonomous air vehicle operations. Paper presented at Moving Autonomy Forward Conference in Grantham, UK. 2006.
  26. Department of Defense Announces Successful Micro-Drone Demonstration. Press Operations. Release No: NR-008-17 Jan. 9, 2017. Available at: https://www.defense.gov/News/News-Releases/News-Release-View/Article/1044811/department-of-defense-announces-successful-micro-drone-demonstration.
  27. Zel'dovich YA.B., Myshkis A.D. EHlementy matematicheskoj fiziki sredy iz nevzaimodejstvuyushchih chastic. M.: Nauka. 1973. 351 s.
  28. Butkovskij A.G. Teoriya optimal'nogo upravleniya sistemami s raspredelennymi parametrami. M.: Nauka. 1965. 476 s.
  29. Sirazetdinov T.K. Optimizaciya sistem s raspredelennymi parametrami. M.: Nauka. 1977. 480 s.
  30. Rapoport EH.YA. Strukturnoe modelirovanie ob"ektov i sistem upravleniya s raspredelennymi parametrami: Ucheb. posobie. M.: Vysshaya shkola. 2003. 299 s.
  31. Rapoport EH.YA. Analiz i sintez sistem avtomaticheskogo upravleniya s raspredelennymi parametrami: Ucheb. posobie. M.: Vysshaya shkola. 2005. 292 s.
  32. Rapoport EH.YA. Optimal'noe upravlenie sistemami s raspredelennymi parametrami: Ucheb. posobie. M.: Vysshaya shkola. 2009.
  33. Kotel'nikov V.A. O propusknoj sposobnosti ehfira i provoloki v ehlektrosvyazi – Vsesoyuznyj ehnergeticheskij komitet. Materialy k I Vsesoyuznomu s"ezdu po voprosam tekhnicheskoj rekonstrukcii dela svyazi i razvitiya slabotochnoj promyshlennosti. 1933. Reprint stat'i v zhurnale UFN, 176:7 (2006). 762–770.
  34. Sarry A.M., Sarry M.F. O mnogochastichnom vzaimodejstvii. ZHurnal tekhnicheskoj fiziki. 2014. T. 84. V. 4. S. 8–14.
  35. Jones J.E. On the Determination of Molecular Fields. I. From the Variation of the Viscosity of a Gas with Temperature. Proceedings of the Royal Society. 1924. V. 106. Is. 738. P. 441–462. DOI: 10.1098/rspa.1924.0081.
  36. Jones J.E. On the determination of molecular fields. II. From the equation of state of a gas. Proceedings of the Royal Society. 1924. V. 106. Is. 738. P. 463–477. DOI: 10.1098/rspa.
  37. Holmurodov H.T., Altajskij M.V., Puzynin I.V., Dardin T., Filatov F.P. Metody molekulyarnoj dinamiki dlya modelirovaniya fizicheskih i biologicheskih processov. Fizika ehlementarnyh chastic i atomnogo yadra. 2003. T. 34. V. 2. S. 472–515.
  38. Loup Verlett. Computer «Experiments» on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. Physical Review. 1967, V. 159. № 1. P. 98–103.
  39. Kuraev A.A., Rak A.O., Kolosov S.V., Koronovskij A.A., Hramov A.E. Bystryj algoritm chislennogo integrirovaniya uravnenij dvizheniya krupnyh chastic v priborah SVCH. ZHurnal tekhnicheskoj fiziki. 2014. T. 84. V. 3. S. 8–13.
  40. Babenko K.I. Osnovy chislennogo analiza. M.: Nauka. 1986.
  41. Malineckij G.G., Potapov A.B., Podlazov A.V. Nelinejnaya dinamika: podhody, rezul'taty, nadezhdy. M.: URSS. 2006.
Date of receipt: 10 мая 2018 г.