350 rub
Journal Achievements of Modern Radioelectronics №5 for 2024 г.
Article in number:
Formation of flight zones of UAV according to the degree of stability in order to increase the reliability of the command radio control line in the conditions of the use of air defense and electronic suppression
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700784-202405-04
UDC: 623.618
Authors:

M.S. Ivanov1

1 Military Educational and Scientific Center of the Air Force Air Force Academy named after professor N.E. Zhukovsky and Yu.A. Gagarin (Voronezh, Russia)
1 point_break@rambler.ru

Abstract:

The combat use of small and medium-class unmanned aerial vehicles (UAVs) in recent local military conflicts, as well as the experience of using UAVs in the operation of the Russian Aerospace Forces in Syria and Ukraine, has shown that they are mainly assigned the tasks of aerial reconnaissance in those areas of the theater of operations (Theater of Operations) where The use of manned aircraft is unjustified or impractical due to the high probability of damage to manned aircraft. The main threats to UAVs in modern theater are the possibility of hitting them with anti-aircraft missile systems (SAMs) of air defense (air defense), as well as the suppression of the command radio control line (CRU) of the UAV by means of electronic suppression (RAP) of the enemy.

The purpose of the work is to develop theoretical solutions aimed at the formalized formation of air defense and RAP zones in the theater based on clustering theory methods for subsequent consideration of these zones in the automated formation of UAV flight routes.

The paper proposes a methodology for the formalized formation of air defense and RAP zones based on the methods of clustering theory. In the future, the air defense and RAP zones are taken into account in the automated route control of the UAV by forming the flight route of the UAV bypassing these zones. The novelty of this solution, which distinguishes it from well–known works in the field of formation of UAV flight routes, is the consideration of two types of destabilizing factors as obstacles to UAV flight - the impact of air defense and REP means. These factors are formalized in the form of an integral metric of nodes in the graph of the geotopological model of the theater flight zone. At the same time, the Lance-Williams mathematical algorithm of hierarchical clustering is used to form «closed for flights» zones in which the probability of UAV damage is high, and areas of control violation due to the impact of RAP means. The connectivity check of the route network is based on the method of determining the strongly connected areas of the graph. The resulting solution makes it possible to increase the stability of UAV control during their combat use in theater equipped with air defense and RAP systems.

Pages: 15-23
For citation

Ivanov M.S. Formation of flight zones of UAV according to the degree of stability in order to increase the reliability of the command radio control line in the conditions of the use of air defense and electronic suppression. Achievements of modern radioelectronics. 2024. V. 78. № 5. P. 15–25. DOI: https://doi.org/10.18127/j20700784-202405-04 [in Russian]

References
  1. Aviatsiya PVO Rossii i nauchno-tekhnicheskiy progress: boevye kompleksy i sistemy vchera, segodnya, zavtra. Pod red. E.A. Fedosova. Monografiya. M.: Drofa. 2004. [in Russian]
  2. Verba V.S., Merkulov V.I. Teoreticheskie i prikladnye problemy razrabotki sistem radioupravleniya novogo pokoleniya. Radiotekhnika. 2014. № 5. S. 39–44. [in Russian]
  3. Verba V.S., Polivanov S.S. Organizatsiya informatsionnogo obmena v setetsentricheskikh boevykh operatsiyakh. Radiotekhnika. 2009. № 8. S. 57–62. [in Russian]
  4. Verba V.S. Aviatsionnye kompleksy radiolokatsionnogo dozora i navedeniya. Printsipy postroeniya, problemy razrabotki i osobennosti funktsionirovaniya. Monografiya. M.: Radiotekhnika. 2014. [in Russian]
  5. Merkulov V.I., Khar'kov V.P. Optimizatsiya ierarkhicheskogo upravleniya gruppoy BPLA. Informatsionno-izmeritel'nye i upravlyayushchie sistemy. 2012. T. 10. № 8. S. 61–67. [in Russian]
  6. Merkulov V.I., Drogalin V.V., Kanashchenkov A.N., Lepin V.N., Samarin O.F., Solov'ev A.A. Aviatsionnye sistemy radioupravleniya. T. 1. Printsipy postroeniya sistem radioupravleniya. Osnovy sinteza i analiza. Pod red. A.I. Kanashchenkova i V.I. Merkulova. M.: Radiotekhnika. 2003. [in Russian]
  7. Makarenko S.I., Ivanov M.S. Setetsentricheskaya voyna – printsipy, tekhnologii, primery i perspektivy. Monografiya. SPb.: Naukoemkie tekhnologii. 2018. [in Russian]
  8. Makarenko S.I. Informatsionnoe protivoborstvo i radioelektronnaya bor'ba v setetsentricheskikh voynakh nachala XXI veka. Monografiya. SPb.: Naukoemkie tekhnologii. 2017. [in Russian]
  9. Kazambaev M.K., Kuatov B.Zh. Nekotorye voprosy ispol'zovaniya bespilotnykh letatel'nykh apparatov. Nadezhnost' i kachestvo slozhnykh sistem. 2017. № 4 (20). S. 97–100. DOI 10.21685/2307-4205-2017-4-13. [in Russian]
  10. Kazar'yan B.I. Bespilotnye apparaty. Sposoby primeneniya v sostave boevykh sistem. Voennaya mysl'. 2012. № 3. S. 21–26. [in Russian]
  11. Rostopchin V.V. Udarnye bespilotnye letatel'nye apparaty i protivovozdushnaya oborona – problemy i perspektivy protivostoyaniya. Bespilotnaya aviatsiya. 2019. URL: https://www.researchgate.net/publication/331772628 _Udarnye_bespilotnye_letatelnye_apparaty_ i_protivovozdusnaa_oborona_-problemy_i_perspektivy _protivostoania [in Russian]
  12. Batraeva I.A. Teterin D.P. Algoritm planirovaniya traektorii dvizheniya bespilotnogo letatel'nogo apparata pri vypolnenii poiskovo-spasatel'nykh operatsiy. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk. 2018. T. 20. № 6. S. 210–214. [in Russian]
  13. Zubov N.P. Problemnye voprosy navigatsii i navedeniya robotizirovannykh letatel'nykh apparatov. Novosti navigatsii. 2011. № 2. S. 29–33. [in Russian]
  14. Kozub A.N., Kucherov D.P. Integratsionnyy podkhod k zadache vybora marshruta gruppy BPLA. Sistemy i sredstva iskusstvennogo intellekta. 2013. № 4. S. 333–343. [in Russian]
  15. Lebedev G.N., Rumakina A.V. Sistema logicheskogo upravleniya obkhoda prepyatstviy bespilotnym letatel'nym apparatom pri marshrutnom polete. Trudy MAI. 2015. № 83. S. 5. [in Russian]
  16. Popov A.N., Teterin D.P. Metody planirovaniya traektorii dvizheniya bespilotnogo letatel'nogo apparata s uchetom protivodeystviya protivnika. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk. 2017. T. 19. № 1–2. S. 371–376. [in Russian]
  17. Yakovlev K.S., Baskin E.S., Andreychuk A.A. Metod avtomaticheskogo planirovaniya sovokupnosti traektoriy dlya navigatsii bespilotnykh transportnykh sredstv. Upravlenie bol'shimi sistemami. 2015. № 58. S. 306–342. [in Russian]
  18. Makarenko S.I. Obespechenie ustoychivosti telekommunikatsionnoy seti za schet ee ierarkhicheskoy klasterizatsii na oblasti marshrutizatsii. Trudy uchebnykh zavedeniy svyazi. 2018. T. 4. № 4. S. 54–67. DOI: 10.31854/1813-324X-2018-4-4-54-67 [in Russian]
  19. Ushanev K.V., Makarenko S.I. Klassifikatsiya informatsionnykh potokov v seti svyazi dlya obosnovaniya tselesoobraznosti primeneniya k nim sposobov obespecheniya kachestva obsluzhivaniya. Infokommunikatsionnye tekhnologii. 2016. T. 14. № 2. S. 142–152. [in Russian]
  20. Vasil'chenko A.S., Ivanov M.S., Malyshev V.A. Formirovanie poletnykh zon bespilotnykh letatel'nykh apparatov po stepeni ustoychivosti upravleniya imi v usloviyakh primeneniya sredstv protivovozdushnoy oborony i radioelektronnogo podavleniya. Sistemy upravleniya, svyazi i bezopasnosti. 2019. № 4. S. 262–279. DOI: 10.24411/2410-9916-2019-10410. [in Russian]
  21. Belous R.A., Sizov Yu.G., Skokov A.L. Nekotorye osobennosti PVO v usloviyakh massovogo primeneniya protivnikom kompleksov BPLA i VTO. Voennaya mysl'. 2013. № 6. S. 64–71. [in Russian]
  22. Makarenko S.I., Ivanov M.S., Popov S.A. Pomekhozashchishchennost' sistem svyazi s psevdosluchaynoy perestroykoy rabochey chastoty. Monografiya. SPb.: Svoe izdatel'stvo. 2013. [in Russian]
  23. Fedoseev V.E., Ivanov M.S. Metodika i rezul'taty analiza potentsial'noy pomekhoustoychivosti priema tsifrovogo signala na fone manipulirovannoy strukturnoy pomekhi. Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta. 2010. T. 6. № 11. S. 108–111. [in Russian]
  24. Fedoseev V.E., Ivanov M.S. Sintez demodulyatora s optimal'noy kompensatsiey strukturnoy preryvistoy pomekhi. Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta. 2010. T. 6. № 10. S. 91–94. [in Russian]
  25. Makarenko S.I., Mikhaylov R.L., Novikov E.A. Issledovanie kanal'nykh i setevykh parametrov kanala svyazi v usloviyakh dinamicheski izmenyayushcheysya signal'no-pomekhovoy obstanovki. Zhurnal radioelektroniki. 2014. № 10. S. 2. [in Russian]
  26. Mikhaylov R.L. Pomekhozashchishchennost' transportnykh setey svyazi spetsial'nogo naznacheniya. Monografiya. Cherepovets: ChVVIURE. 2016. [in Russian]
  27. Mikhaylov R.L. Radioelektronnaya bor'ba v vooruzhennykh silakh SShA: voenno-teoreticheskiy trud. SPb.: Naukoemkie tekhnologii. 2018. [in Russian]
  28. Kormen T., Leyzerson Ch., Rivest R. Algoritmy: postroenie i analiz. M.: MTsNMO. 2000.
  29. Villiams U.T., Lans D.N. Metody ierarkhicheskoy klassifikatsii. Statisticheskie metody dlya EVM. Pod red. M.B. Malyutova. M.: Nauka. 1986. S. 269–301. [in Russian]
Date of receipt: 01.04.2024
Approved after review: 12.04.2024
Accepted for publication: 30.04.2024