350 rub
Journal Achievements of Modern Radioelectronics №3 for 2024 г.
Article in number:
Formation of radar frame flow in a spatially distributed system of small-size airborne radar systems
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700784-202403-07
UDC: 621.396.969
Authors:

V.A. Nenashev1, A.R. Bestugin2, I.A. Kirshina3, E.A. Antokhin4

1–4 Saint-Petersburg State University of Aerospace Instrumentation (St. Petersburg, Russia)

1 nenashev.va@yandex.ru, 2 fresguap@mail.ru, 3 ikirshina@mail.ru, 4 fresguap@mail.ru

Abstract:

Spatially distributed radar systems are increasingly used in the survey of the Earth's surface to provide real-time operational search and automatic recognition of physical ground objects. Each small-size radar station of the spatially distributed system should provide high resolution of the formed radar frame for the front viewing areas of small-size airborne radars. This resolution should be comparable to the resolution of optical frames registered in optical localisation video vision systems.  At the same time, such vision systems should be able to operate in difficult weather and seasonal conditions of limited visibility.

The purpose is to develop a methodology for the formation of a stream of radar frames with a high frequency of their succession for the operational display of the radar situation in the forward viewing areas of airborne radars, combined in a group and operating in real-time modes.

Development and research of this methodology will allow to display on the operator's screen a stream of radar frames of high resolution and with high frequency of their succession, to which new and modified algorithms of territory classification and recognition of physical ground objects can be applied. This result will increase the informativeness, completeness and reliability of the displayed radar situation, as well as - reduce the time to search for physical ground objects, increase the reliability of their recognition in automatic mode of observation by a group of small-sized airborne radars.

The new technique, which provides prompt and highly accurate monitoring of the Earth's surface, is designed for emergency search of physical ground objects, in particular, people who have got into the zone of emergency situations as a result of natural and man-made disasters. The implementation of this technique will make it possible to carry out a timely search in a number of emergency situations that pose a special danger to human life, to find them promptly and thereby save many lives and health of people.

Pages: 59-67
For citation

Nenashev V.A., Bestugin A.R., Kirshina I.A., Antokhin E.A. Formation of radar frame flow in a spatially distributed system of small-size airborne radar systems. Achievements of modern radioelectronics. 2024. V. 78. № 3. P. 59–69. DOI: https://doi.org/ 10.18127/j20700784-202403-07 [in Russian]

References
  1. Kim H.G., Park J.-S., Lee D.-H. Potential of Unmanned Aerial Sampling for Montoring Insect Populations in Rice Fields. Florida Entomol. 2018. V. 101. P. 330–334.
  2. Toro G.F., Tsourdos A. UAV sensors for environmental monitoring. Belgrade: MDPI. 2018.
  3. Nenashev V.A., Sentsov A.A. Prostranstvenno-raspredelennye sistemy radiolokatsionnogo i opticheskogo monitoringa: monografiya. SPb: redaktsionno-izdatel'skiy tsentr GUAP. 2022. [in Russian]
  4. Nenashev V.A. Sentsov A.A., Kuyumchev G.V. Modelirovanie protsessa formirovaniya radiolokatsionnogo izobrazheniya vysokogo razresheniya v bortovykh RLS. Voprosy radioelektroniki. 2013. T. 2. № 3. S. 48–56. [in Russian]
  5. Nenashev V.A., Shepeta A.P., Kryachko A.F. Fusion radar and optical information in multiposition on-board location systems. 2020 Wave Electronics and its Application in Information and Telecommunication Systems, WECONF 2020. SPb. P. 9131451.
  6. Nenashev V.A., Khanykov I.G. Formation of fused images of the land surface from radar and optical images in spatially distributed on-board operational monitoring systems. Journal of Imaging. 2021. V. 7. № 12. DOI 10.3390/jimaging7120251.
  7. Nenashev V.A., Khanykov I.G. Formirovanie kompleksnogo izobrazheniya zemnoy poverkhnosti na osnove klasterizatsii pikseley
    lokatsionnykh snimkov v mnogopozitsionnoy bortovoy sisteme. Informatika i avtomatizatsiya. 2021. T. 20. № 2. S. 302–340.
    [in Russian]
  8. Yang T., Zhang X., Xu. Q., Zhang S., Wang T. An Embedded-GPU-Based Scheme for Real-Time Imaging Processing of Unmanned Aerial Vehicle Borne Video Synthetic Aperture Radar. Remote Sens. 2024, 16, 191. https://doi.org/10.3390/rs16010191.
  9. Chen J., An D., Wang W., Chen L., Feng D., Zhou Z. A Novel Generation Method of High Quality Video Image for High Resolution Airborne ViSAR. Remote Sens. 2021, 13, 3706. https://doi.org/10.3390/rs13183706.
  10. Nenashev V.A., Afanas'eva V.I., Nenashev S.A. Osobennosti formirovaniya potoka radiolokatsionnykh kadrov s chastotoy blizkoy k videochastote. Sovremennye tekhnologii v zadachakh upravleniya, avtomatiki i obrabotki informatsii. Tezisy dokladov XXXII Mezhdunar. nauch.-tekhnich. konf. 2023. 14-20 sentyabrya 2023 g. S. 131–132. [in Russian]
  11. He Z., Li Z., Chen X., Yu A., Yi T., Dong Z. Detecting Moving Target on Ground Based on Its Shadow by Using VideoSAR. Remote Sens. 2021, 13, 3291. https://doi.org/10.3390/rs13163291.
  12. Kim S., Yu J., Jeon S.-Y., Dewantari A., Ka M.-H. Signal Processing for a Multiple-Input, Multiple-Output (MIMO) Video Synthetic Aperture Radar (SAR) with Beat Frequency Division Frequency-Modulated Continuous Wave (FMCW). Remote Sens. 2017, 9, 491. https://doi.org/10.3390/rs9050491.
  13. Zhang Y., Zhu D., Mao X., Yu X., Zhang J., Li Y. Multirotors Video Synthetic Aperture Radar: System Development and Signal Processing. IEEE Aerospace and Electronic Systems Magazine. V. 35. № 12. P. 32–43. 1 Dec. 2020. Doi: 10.1109/MAES.2020.3000318.
  14. He Z., Chen X., Yi T., He F., Dong Z., Zhang Y. Moving Target Shadow Analysis and Detection for ViSAR Imagery. Remote Sens. 2021, 13, 3012. https://doi.org/10.3390/rs13153012.
  15. Ding J., Wen L., Zhong C., Loffeld O. Video SAR Moving Target Indication Using Deep Neural Network. IEEE Trans. Geosci. Remote Sens. 2020, 58, 7194–7204.
  16. Wen L., Ding J., Loffeld O. Video SAR Moving Target Detection Using Dual Faster R-CNN. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 2984–2994.
  17. Yang X., Shi J., Zhou Y., Wang C., Hu Y., Zhang X., Wei S. Ground Moving Target Tracking and Refocusing Using Shadow in Video-SAR. Remote Sens. 2020, 12, 3083.
  18. Guo P., Wu F., Tang S., Jiang C., Liu C. Implementation Method of Automotive Video SAR (ViSAR) Based on Sub-Aperture Spectrum Fusion. Remote Sens. 2023, 15, 476.
  19. Kim C.K., Azim M.T., Singh A.K., Park S.O. Doppler Shifting Technique for Generating Multi-Frames of Video SAR via Sub-Aperture Signal Processing. IEEE Trans. Signal Process. 2020, 68, 3990–4001.
  20. Yang C., Chen Z., Deng Y., Wang W., Wang P., Zhao F. Generation of Multiple Frames for High Resolution Video SAR Based on Time Frequency Sub-Aperture Technique. Remote Sens. 2023, 15, 264.
  21. Cheng Y., Ding J., Sun Z. Processing of airborne video SAR data using the modified back projection algorithm. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5238013.
  22. Jiang J., Li Y., Yuan Y., Zhu Y. Generalized Persistent Polar Format Algorithm for Fast Imaging of Airborne Video SAR. Remote Sens. 2023, 15, 2807. https://doi.org/10.3390/rs15112807.
  23. Nenashev V.A., Nenashev S.A. Klassifikatsiya i raspoznavanie nazemnykh ob"ektov v potoke radiolokatsionnykh kadrov na osnove neyrosetevogo podkhoda v peredney zone obzora bortovykh RLS mnogopozitsionnoy sistemy. Trudy Mezhdunar. konf. po komp'yuternoy grafike i zreniyu "Grafikon". 2023. № 33. S. 572–580. DOI 10.20948/graphicon-2023-572–580. [in Russian]
  24. Vasil'ev K.K., Gutorov A.S., Maslov A.A. i dr. Korabel'nye mnogopozitsionnye RLS. Metody obrabotki informatsii. Monografiya. Pod red. E.D. Pavlygina. M.: Radiotekhnika. 2019. [in Russian]
  25. Patent № 2703996 C2 RF, MPK G01S 13/90. Sposob lokatsii tseley v perednikh zonakh obzora bortovykh radiolokatsionnykh stantsiy dvukhpozitsionnoy radiolokatsionnoy sistemy. Korzhavin G.A., Nenashev V.A., Shepeta A.P., Podoplekin Yu.F., Davidchuk A.G. Zayavl. 26.03.2019. Opubl. 23.10.2019. [in Russian]
  26. Nenashev V.A., Nenashev S.A. Klassifikatsiya i raspoznavanie nazemnykh ob"ektov v potoke radiolokatsionnykh kadrov na osnove neyrosetevogo podkhoda. Avtomatizatsiya v promyshlennosti. 2024. № 1. S. 29–33. DOI 10.25728/avtprom.2024.01.07. [in Russian]
  27. Patent № 2760873 C1 RF, MPK G01S 13/52, G01S 13/42. Ustroystvo dlya opredeleniya parametrov dvizheniya nazemnykh ob"ektov v dvukhpozitsionnoy sisteme bortovykh malogabaritnykh RLS. Nenashev V.A., Grigor'ev E.K., Shepeta A.P., Podoplekin Yu.F. Zayavl. 09.03.2021. Opubl. 01.12.2021. [in Russian]
Date of receipt: 08.02.2024
Approved after review: 20.02.2024
Accepted for publication: 28.02.2024