350 rub
Journal Achievements of Modern Radioelectronics №2 for 2024 г.
Article in number:
Algorithm for recognizing types of intrapulse modulation of time-overlapped pulses
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700784-202402-05
UDC: 621.396.62
Authors:

A.S. Podstrigaev1, Tran Huu Nghi2, D.A. Kalinin3, Nguyen Trong Nhan4

1–3 Saint Petersburg Electrotechnical University «LETI» (Saint Petersburg, Russia)
4 Le Quy Don Technical University (Hanoi, Vietnam)

1 ap0d@ya.ru, 2 huunghiht@gmail.com, 3 dimk.a.a@inbox.ru, 4 10th20th30th@gmail.com

Abstract:

Radio monitoring complexes are used to analyze the electromagnetic situation, to control the operation of radio emission sources (RESs), to ensure electromagnetic compatibility of RESs, to control and analyze threats to the normal operation of radio electronic means. An important task in radio monitoring is to determine the type and mode of operation of RESs. For this purpose, in particular, the recognition of the type of intrapulse modulation (IPM) of signals common in practice is performed: chirp, simple pulse, binary and quadrature phase shift keying. The simultaneous operation of a large number of RESs for radio monitoring complex creates complex signal environment. It is characterized primarily by the fact that in the instantaneous analysis band of the radio monitoring complex the probability of time-overlapped pulses increases. One of the negative effects of such time-overlapping is hiding of a weak pulse in the spectrum of a powerful pulse. This prevents stable detection of the weak pulse throughout all analysis windows in which it exists. Another difficulty is the significant distortion of the envelope shape of the weak pulse. Together, these effects reduce the reliability of recognizing the type of IPM. Therefore, in this paper, an algorithm for recognizing types of IPM of time-overlapped pulses is developed. Using simulated and recorded signals, the influence of the parameters of time-overlapped pulses and signal-to-noise ratio (SNR) on the reliability of recognition is investigated. It is shown that at a difference of carrier frequencies of time-overlapped pulses not less than 10 MHz and a SNR value for the powerful pulse not less than 4 dB ratio of pulse amplitudes, providing the probability of correct recognition is not worse than a given, depends on the specified SNR value linearly. Increasing the SNR value for the powerful pulse from 4 to 14 dB leads to decrease of the amplitude ratio of weak and powerful pulses by 8.5–10 dB. At the difference of carrier frequencies of time-overlapped pulses of 10 MHz and the difference of their amplitudes of 11 dB probability of correct recognition of the weak pulse of at least 90% is provided at the SNR value for it is not less than 3 dB. At the specified parameters of pulses to recognize the type of IPM of the weak pulse, the proposed algorithm requires the SNR values only 1–3 dB higher than the previously developed algorithm. Achieving the stated quality parameters in practice will require the SNR values 1.5–3.5 dB higher due to the noise introduced during signal sampling. The obtained results can be used in the development of a signal analysis device from the composition of the radio monitoring complex.

Pages: 53-65
For citation

Podstrigaev A.S., Tran Huu Nghi, Kalinin D.A., Nguyen Trong Nhan. Algorithm for recognizing types of intrapulse modulation of time-overlapped pulses. Achievements of modern radioelectronics. 2024. V. 78. № 2. P. 53–65. DOI: https://doi.org/10.18127/j20700784-202402-05 [in Russian]

References
  1. Rembovsky A., Ashikhmin A., Kozmin V., Smolskiy S. Radio monitoring: Problems, methods and equipment. Lecture notes in electrical engineering. Springer. 2009. DOI: https://doi.org/10.1007/978-0-387-98100-0.
  2. Tokarev A.B. Razvitie metodov i algoritmov obrabotki signalov pri radiotekhnicheskikh izmereniyakh i radiokontrole v usloviyakh apriornoj neopredelennosti. Diss. … dokt. tekhn. nauk. Voronezh. 2013. [in Russian]
  3. Zhu Z., Nandi A.K. Automatic modulation classification: principles, algorithms and applications. John Wiley & Sons. 2015.
  4. Dvornikov S.V., Dvornikov S.S., Konoplev M.A. Algoritm raspoznavaniya signalov radiosvyazi na osnove simmetricheskikh matrits. Informatsionnye tekhnologii. 2010. № 9. S. 75–77. [in Russian]
  5. Likhachev V.P., Veselkov A.A., Nguen Ch.N. Kharakteristiki obnaruzheniya linejno-chastotno-modulirovannykh, fazo-kodo-manipulirovannykh i prostykh radioimpul'sov v avtokorrelyatsionnom priemnike. Radiotekhnika. 2018. № 8. S. 71–76. DOI: 10.18127/j00338486-201808-14. [in Russian]
  6. Levanon N., Mozeson E. Radar signals. John Wiley & Sons. 2004.
  7. Fadeenko V.B., Fadeenko I.V., Kuptsov V.D., Vasil'ev D.A., Davydov V.V., Rud' V.Yu. Mnogofunktsional'nyj radiolokatsionnyj kompleks dlya distantsionnogo kontrolya sostoyaniya okruzhayushchej sredy i poverkhnosti Zemli. Sb. trudov po materialam VI Mezhdunar. konferentsii i molodezhnoj shkoly «Informatsionnye tekhnologii i nanotekhnologii». Samara: Samarskij natsional'nyj issledovatel'skij universitet imeni akademika S.P. Koroleva. 2020. S. 589–596. [in Russian]
  8. Dvornikov S.V., Dvornikov S.S., Markov E.V. Modifitsirovannye impul'snye posledovatel'nosti na osnove kodov Barkera. Trudy uchebnykh zavedenij svyazi. 2022. T. 8. № 1. S. 8–14. DOI: https://doi.org/10.31854/1813-324X-2022-8-1-8-14. [in Russian]
  9. Zhukov V.Yu., Shchukin G.G. Sovremennye problemy meteorologicheskoj radiolokatsii. Radiotekhnika i elektronika. 2016. T. 61. № 10. S. 927–939. DOI: 10.7868/S0033849416100259. [in Russian]
  10. Kupryashkin I.F., Sokolik N.V. Modelirovanie dal'nostno-doplerovskikh portretov mul'tikopterov, formiruemykh RLS s nepreryvnym chastotno-modulirovan­nym izlucheniem. Zhurnal radioelektroniki. 2021. № 3. DOI: https://doi.org/10.30898/1684-1719.2021.3.12. [in Russian]
  11. Tsui J.B.Y. Special design topics in digital wideband receivers. Artech House. 2010.
  12. Andreev V.G., Nguen T.F. Adaptivnaya obrabotka signalov na fone kombinirovannykh pomekh. Izvestiya vysshikh uchebnykh zavedenij. Radioelektronika. 2015. T. 58. № 2 (632). S. 48–53. [in Russian]
  13. Podstrigaev A.S., Smolyakov A.V., Likhachev V.P. Programmno-opredelyaemye sredstva shirokopolosnogo analiza signalov na osnove tekhnologii subdiskretizatsii. SPb.: Izd-vo SPbGETU «LETI». 2021. [in Russian]
  14. Kawalec A., Owczarek R. Specific emitter identification using intrapulse data. First European Radar Conference (EURAD). 2004. P. 249–252.
  15. Podstrigaev A.S., Smolyakov A.V., Maslov I.V. Probability of pulse overlap as a quantitative indicator of signal environment complexity. Izvestiya vysshikh uchebnykh zavedenij Rossii. Radioelektronika. 2020. T. 23. № 5. S. 37–45. DOI: https://doi.org/10.32603/ 1993-8985-2020-23-5-37-45.
  16. Al-Oudatallah J., Abboud F., Khoury M., Ibrahim H. Overlapping signal separation method using superresolution technique based on experimental echo shape. Advances in Acoustics and Vibration. 2017. V. 2017. P. 1–9. DOI: 10.1155/2017/7132038.
  17. Liu Y., Zhang Q. Improved method for deinterleaving radar signals and estimating PRI values. IET Radar, Sonar & Navigation. 2018. V. 12. № 5. P. 506–514. DOI: 10.1049/iet-rsn.2017.0516.
  18. Podstrigaev A.S., Smolyakov A.V., Likhachev V.P. Vybor priemnika dlya shirokopolosnogo analiza signal'noj obstanovki na osnove otsenki ee slozhnosti. Radiotekhnika. 2022. T. 86. № 1. S. 143–153. DOI: https://doi.org/10.18127/j00338486-202201-19. [in Russian]
  19. Svyatkina V.I., Kuptsov V.D., Davydov V.V., Rud' V.Yu. O vozmozhnosti ispol'zovaniya spektral'nogo analiza dlya kontrolya raspredeleniya energii elektromagnitnykh kolebanij v razlichnykh polosakh chastot traktov radiolokatsionnykh stantsij. Sb. trudov po materialam VI Mezhdunar. konferentsii i molodezh­noj shkoly «Informatsionnye tekhnologii i nanotekhnologii». T. 2. Samara: Samarskij natsional'nyj issledovatel'skij universitet imeni akademika S.P. Koroleva. 2020. S. 308–314. [in Russian]
  20. Chan Khyu Ngkhi, Podstrigaev A.S., Nguen Chong Nkhan. Algoritm klassifikatsii signalov s detektirovaniem na dvukh promezhutochnykh chastotakh dlya sredstv radiotekhnicheskogo monitoringa. Uspekhi sovremennoj radioelektroniki. 2022. T. 76. № 7. S. 30–39. DOI: https://doi.org/10.18127/j20700784-202207-03. [in Russian]
  21. Nghi T.H., Podstrigaev A.S., Nhan N.T., Ikonenko D.A. Parameter justification of a signal recognition algorithm based on detection at two intermediate frequencies. Izvestiya vysshikh uchebnykh zavedenij Rossii. Radioelektronika. 2023. T. 26. № 5. S. 40–49. DOI: https://doi.org/10.32603/1993-8985-2023-26-5-40-49.
  22. Chan Khyu Ngkhi, Podstrigaev A.S., Nguen Chong Nkhan, Ikonenko D.A. Otsenka dostovernosti raspoznavaniya signalov dlya algoritma raspoznavaniya s detektirovaniem na dvukh promezhutochnykh chastotakh. Uspekhi sovremennoj radioelektroniki. 2023. T. 77. № 10. S. 70–79. DOI: https://doi.org/ 10.18127/j20700784-202310-07. [in Russian]
Date of receipt: 26.12.2023
Approved after review: 17.01.2024
Accepted for publication: 22.01.2024