M.I. Noniashvili1, G.P. Slukin2, V.V. Chapursky3
1–3 Bauman Moscow State Technical University’s Research Institute of Radioelectronic Technology (Moscow, Russia)
1 noniashvili@bmstu.ru, 2 niiret@bmstu.ru, 3 valch2008@yandex.ru
For airfield surveillance radars it is of great practical interest to build them on the principles of MIMO radar, which exclude the use of mechanical rotation of the antenna array for traditional radars of this purpose. For this reason, the development and comparison of methods for digital survey of space and resolution theory based on the generalized uncertainty function (GUF) in spatial coordinates in relation to the MIMO-type airfield surveillance radars are very important.
The main purposes of the article are analysis of resolution in spatial coordinates for MIMO airfield surveillance radar with different options for transmitting and receiving circular antenna arrays based on calculation of the cross sections of the GUF at characteristic ranges and azimuths of the target with the radiation of multi-frequency probing signals by the transmitting array elements.
For MIMO airfield surveillance radars, two-dimensional and one-dimensional sections of the GUF in Cartesiaт coordinates are determined using theoretical expressions for the GUF with a fixed point target. They have been obtained and compared for two variants of array antenna systems (with transmitting and receiving circular arrays and with a linear transmitting array and a circular receiving array) taking into account of equivalent virtual arrays during emission of coherent multi-frequency signals.
The proposed theoretical technique makes it possible to quickly evaluate the optimal configuration of a MIMO antenna system and rational principles and methods for space surveying in a given wavelength range when developing and creating the airfield surveillance radars based on MIMO principles.
Noniashvili M.I., Slukin G.P., Chapursky V.V. Resolution of variants of airfield surveillance MIMO radar. Achievements of modern radioelectronics. 2024. V. 78. № 2. P. 40–52. DOI: https://doi.org/10.18127/j20700784-202402-04 [in Russian]
- Lushnikov A.S. Nazemnye radioelektronnye sredstva obespecheniya poletov vozdushnykh sudov: Ucheb. posobie. Ul'yanovsk: UVAU GA. 2001. [in Russian]
- Sverdlov B.G., Chapurskij V.V. Metody i algoritmy obnaruzheniya ob''ektov radiolokatsionnymi sistemami maloj dal'nosti bez mekhanicheskogo skanirovaniya na osnove mnogokanal'nogo prostranstvenno-chastotnogo postroeniya. Sb. materialov ezhegodnoj nauch. konf. NII MVS YuFU. Taganrog. 2010. S. 127–135. [in Russian]
- Sverdlov B.G., Chapurskij V.V. Razvitie metodov i tekhnologii MIMO radiolokatsii dlya obnaruzheniya malozametnykh i malopodvizhnykh ob''ektov. Sb. trudov IV konf. RFFI. Kaluga. 2009. S. 155–170. [in Russian]
- Chapurskij V.V. Izbrannye zadachi teorii sverkhshirokopolosnykh radiolokatsionnykh sistem. Izd. 3-e. M.: Izdatel'stvo MGTU im. N.E. Baumana. 2017. [in Russian]
- Kilpatrick T., Longstaff I.D. Generalising the co-array, for SAR and MIMO radar. 2015 IEEE Radar Conference. Arlington, VA, USA. 2015. P. 1188–1192. DOI: 10.1109/RADAR.2015.7131174.
- Aviatsionnye pravila. Ch. 170. T. II. Izd. 3-e. 2013. [in Russian]