K.P. Likhoedenko1, G.M. Seregin2, V.B. Suchkov3, A.Yu. Perov4
1–4 Bauman Moscow State Technical University (Moscow, Russia)
1 klikhoedenko@bmstu.ru, 2 seregin@bmstu.ru, 3 vbs-2014@bmstu.ru, 4 perovau@bmstu.ru
The paper presents a multi-point model of the GPS satellite for the algorithm of formation of polarization radar portraits for an inverse synthetic-aperture radar. This method has several advantages over classical methods for forming radar signatures of complex geometric objects. It has been presented that the usage of multi-point representation of the location object allows to significantly reduce the time of calculation of the reflected signal parameters and construction of the radar portrait.
A multi-point GPS satellite representation for an inverse synthetic-aperture radar operating in the X-band at 10 GHz has been generated. The parameters of the probing LFM radio signal have been calculated according to the presented methodology. The angular intervals of the synthesized aperture have been also defined, taking into account the resolution requirements when using a multipoint model with a projection parallelepiped size of 25 cm. For the calculated bandwidth and synthesis intervals, the complex reflection coefficients for the full polarization matrix of the reflected signal have been calculated. The computed values of the reflected signal in the spatial-frequency grid have been mapped to the picture plane using the inverse Fourier transform operation. Polarization radar portraits have been synthesized for the investigated location object from a given sighting angle at different values in range and azimuth angle.
The described approach allowed a radar portrait of the target to be generated several times faster than with classical approaches. The radar's range resolution of 18.3 cm and azimuth resolution of 9.4 cm enable the formation of a signature with sufficient resolution to apply image processing algorithms for feature extraction. The use of a polarization channel for information processing extends the initial space of features. It also allows the application of polarization selection methods.
Likhoedenko K.P., Seregin G.M., Suchkov V.B., Perov A.Yu. Mathematical modeling of polarized radar images for complex shaped objects on the basis of their multipoint models in radar systems with inverse aperture synthesis. Achievements of modern radioelectronics. 2024. V. 78. № 2. P. 13–24. DOI: https://doi.org/10.18127/j20700784-202402-02 [in Russian]
- Chen V.C., Martorella M. Inverse synthetic aperture radar imaging: Principles, algorithms and applications. Institution of Engineering and Technology. 2014.
- Ozdemir C. Inverse synthetic aperture radar imaging with MATLAB algorithms. John Wiley & Sons. 2012.
- Lazarov A., Minchev C. ISAR geometry, signal model, and image processing algorithms. IET Radar, Sonar & Navigation. 2017. V. 11. №. 9. P. 1425–1434.
- Chen R., Jiang Y. Hybrid SAR-ISAR imaging for space target via 2-D spectrum and SIHR with spaceborne radar. IEEE Transactions on Aerospace and Electronic Systems. 2024. P. 1–22. DOI: 10.1109/TAES.2024.3351113.
- Anger S. et al. High-resolution inverse synthetic aperture radar imaging of satellites in space. IET Radar, Sonar & Navigation. 2023. P. 1–20.
- Yang T. et al. Orbital-angular-momentum-based super-resolution ISAR imaging for maneuvering targets: Modeling and performance analysis. Digital Signal Processing. 2021. V. 117. P. 103197.
- Kumari V.V., Hari K. Efficient ISAR image classification using MECSM representation. Journal of King Saud University – Computer and Information Sciences. 2016. V. 17.
- Yang H., Zhang Ya., Ding W. A fast recognition method for space targets in ISAR images based on local and global structural fusion features with lower dimensions. International Journal of Aerospace Engineering. 2020. V. 21.
- Du H. et al. Integrated convolution network for ISAR imaging and target recognition. IEEE Journal on Miniaturization for Air and Space Systems. 2023.
- Huang P. et al. High-resolution ISAR imaging for maneuvering targets based on iterative adaptive processing. IEEE Transactions on Computational Imaging. 2021. V. 7. P. 1093–1108.
- Demirci S., Kirik O., Ozdemir C. Interpretation and analysis of target scattering from fully-polarized ISAR images using Pauli decomposition scheme for target recognition. IEEE Access. 2020. V. 8. P. 155926–155938.
- Borzov A.B., Labunets L.V., Pavlov G.L., Suchkov V.B., Perov A.Yu. Raspoznavanie antropogennykh 3D-ob''ektov na podstilayushchej poverkhnosti metodami intellektual'nogo analiza polyarizatsionnoj matritsy rasseyaniya. Radiotekhnika i elektronika. 2020. T. 65. № 7. S. 684–694. [in Russian]
- Sineva A.A. Polyarizatsionnaya radiolokatsiya dlya obnaruzheniya i identifikatsii plenochnykh zagryaznenij morya. Trudy Moskovskogo fiziko-tekhnicheskogo instituta. 2014. T. 6. № 3 (23). S. 129–141. [in Russian]
- Demirci S. Applying polarimetric target decomposition to 2D turntable ISAR imagery of a complex vehicle. International Journal of Antennas and Propagation. 2022. V. 2022. P. 1–15.
- Borzov A.B. i dr. Millimetrovaya radiolokatsiya: metody obnaruzheniya i navedeniya v usloviyakh estestvennykh i organizo-vannykh pomekh. M.: Radiotekhnika. 2010. [in Russian]
- Astapov Yu.M., Borzov A.B., Efremov A.K. i dr. Avtonomnye informatsionnye i upravlyayushchie sistemy. V 4-kh tomakh. T. 2. Pod red. A.B. Borzova. M.: OOO NITs «Inzhener», OOO «Oniko-M». 2011. [in Russian]
- Suchkov V.B. Metodika sozdaniya mnogotochechnoj modeli aerodinamicheskoj tseli dlya opredeleniya vkhodnykh signalov bortovykh radiolokatsionnykh datchikov. Elektromagnitnye volny i elektronnye sistemy. 2013. T. 18. № 6. S. 45–53. [in Russian]
- Borzov A.B. et al. Mathematical modeling and simulation of the input signals of short-range radar systems. Journal of Communications Technology and Electronics. 2014. V. 59. P. 1356–1368.
- Yakubovskij S.V., Alfer'ev A.V., Frolov D.V. Metodika rascheta polnopolyarizatsionnykh dal'nostno-uglovykh radiolokatsionnykh portretov dvizhushchikhsya ob''ektov v RLS s inversnym sintezom apertury. Zhurnal radioelektroniki. 2019. № 9. [in Russian]
- Timoshenko A.V., Yakubovskij S.V., Khodataev N.A., Alfer'ev A.V. Obnaruzhenie slozhnykh ob''ektov radiolokatsionnymi sistemami s polnym polyarizatsionnym zondirovaniem prostranstva i inversnym sintezirovaniem apertury antenny. Elektromagnitnye volny i elektronnye sistemy. 2020. T. 25. № 6. S. 45–56. DOI: 10.18127/j15604128-202006-06. [in Russian]