T.Yu. Shumilov1, D.R. Savin2, V.V. Ivanin3
1–3 JSC NPP Radio Communication; Siberian Federal University (SFU) (Krasnoyarsk, Russia)
1 shumilovty@gmail.com, 2 Denis.Savin.1999@mail.ru, 3 ivanin.vladimir.kr@yandex.ru
The most important device of modern millimeter wavelength range satellite communication stations is a power amplifier. With the development of electronic components, solid state power amplifiers are gaining popularity over traveling-wave-tube amplifier due to their advantages in electrical performance, MTBF and manufacturability [1]. But it’s necessary to pay attention to the manufacturability of such high-power Q-band range amplifiers, as such devices will consist of a lot of microwave components, the quality of connection of which should ensure the transmission of electromagnetic energy with minial losses. One such component is a microwave power divider/combiner. It’s subject to high demands in terms of its manufacturability, serial production capability and electrical characteristics [2,3]. Finding an optimal design that combines all these requirements is currently an urgent task.
Comparison of achievable parameters of existing microwave power combining schemes, as well as the selection and experimental validation of the combining scheme for the construction of a power amplifier operating in the frequency range of 42–45 GHz.
The obtained results can be used by designers in the development of Q-band range power amplifiers, to increase the efficiency of the system.
Shumilov T.Yu. Savin D.R., Ivanin V.V. Low loss and high manufacturability Q-band range waveguide combiner. Achievements of modern radioelectronics. 2024. V. 78. № 11. P. 75–84. DOI: https://doi.org/10.18127/ j20700784-202411-08 [in Russian]
- Cristi Damian. Linearity of GaN Based Solid State Power Amplifiers. Advantech Wireless. URL: https://advantechwireless.com/wp-content/uploads/WP-Linearity-of-GaN-based-solid-State-power-amplifiers-2-140853.pdf (дата обращения: 02.02.24)
- Jorge A. Ruiz-Cruz, Jose R. Montejo-Garai, Jesus M. Rebollar. Short-slot E- and H-plane waveguide couplers with an arbitrary power division ratio. International Journal of Electronics. 2011. V. 98. P. 11–24,
- Pei Zheng, Hou-Jun Sun, Meng-Jia Luo, Zhi-Lei Wen, Hong Deng. W-band waveguide 3dB directional coupler based on E- plane branch line bridge Asia-Pacific Microwave Conference Proceedings. 2013. P. 279–281.
- Bahl I.J. Fundamentals of RF and Microwave Transistor Amplifiers. 2009. 671 p.
- Kokolov A.A., Babak L.I. Skhemy slozheniya moshchnosti dlya monolitnyh integral'nyh SVCH-usilitelej. Doklady TUSURa «Nanoelektronika. Nanotekhnologiya. Fotonika. Fizicheskaya plazmennaya elektronika». 2011. № 2 (24). S. 24–30 [in Russian].
- Kenneth J. Russel. Microwave Power Combining Techniques. IEEE Transactions on microwave theory and techniques. 1979. V. MTT-27. № 5. P. 472–478.
- Kai Chang. Millimeter-Wave Power-Combining Techniques. IEEE Transactions on microwave theory and techniques. 1983. V. MTT-31. № 2. P. 91–107.
- Garmash S.V, Kishchinskij A.A. Tverdotel'nye usiliteli moshchnosti SVCH diapazona so sverhoktavnoj polosoj. Materialy 28-j Mezhdunar. krymskoj konf. «SVCH-tekhnika i telekommunikacionnye tekhnologii». 2018. T. 1. S. 1–11 [in Russian].
- Pozar D.M. Microwave Engineering, fourth edition – University of Massachusetts at Amherst. 2012. 737 p.
- Serebrenickij P.P. Sovremennye elektroerozionnye tekhnologii i oborudovanie: Ucheb. posobie. SPb.: Baltijskij gos. tekhn. un-t. 2007. 228 s. [in Russian].
- Stepanov A. Vysokoskorostnoe frezerovanie v sovremennom proizvodstve //CAD/CAM/CAE obcerver № 3. 2002 [in Russian].