350 rub
Journal Achievements of Modern Radioelectronics №11 for 2024 г.
Article in number:
Simulation of static characteristics of the HEMT transistor
Type of article: scientific article
DOI: 10.18127/j20700784-202411-07
UDC: 621.382.3
Authors:

A.L. Khvalin1, V.M. Doroshenko2

1 National Research Saratov State University (Saratov, Russia)
2 Yuri Gagarin State Technical University (Saratov, Russia)
1 Khvalin63@mail.ru, 2 Dorvalentina9@gmail.com

Abstract:

Most domestic and foreign transistors, as a rule, do not have computer models compatible with modern automated design systems. To a large extent, this is due to the complexity of solving the corresponding optimization problems to determine the set of parameters of the equivalent transistor model. The relevance of the work is due to the lack of a modern element base in the libraries of known computer CAD systems, which significantly limits the design capabilities of specific devices. The article presents the main stages of modeling the low-noise HEMT transistor FPD6836P70 in computer CAD.

The basic transistor model has more than 60 parameters, the optimization targets are five experimentally measured static and eight frequency (amplitudes and phases of S-parameters in an ultra-wide operating range of up to 26 GHz) characteristics of the FPD6836P70 transistor.

Since existing computer methods for finding optimal solutions do not have a universal algorithm suitable for solving any optimization problem, solving specific optimization problems requires the development of an individual approach. The technical novelty of the solution to the problem presented in the article lies in dividing the general problem into two subtasks: optimization of static and frequency characteristics.

The purpose of the modeling was to obtain the calculated characteristics that are as close as possible to the measured static characteristics of the transistor. The article describes the methodology for modeling static characteristics based on the common basic EEHEMT transistor model.

The article defines a set of 19 parameters of the equivalent circuit of the transistor that affect the static characteristics. Optimal numerical values of the parameters of the equivalent circuit EEHEMT are found, and the results of calculating the family of static characteristics of the transistor are presented. The results of modeling the static characteristics can be used as a first approximation for the subsequent solution of the problem of optimizing the frequency characteristics (S-parameters) of the transistor using the EEHEMT model.

The analysis of the obtained results shows that the calculated static characteristics differ from the measured ones by no more than 5%.

Pages: 60-66
For citation

Khvalin A.L., Doroshenko V.M. Simulation of static characteristics of the HEMT transistor. Achievements of modern radioelectronics. 2024. V. 78. № 11. P. 60–66. DOI: https://doi.org/10.18127/j20700784-202411-07 [in Russian]

References
  1. Hvalin A.L. Analiz i sintez integral'nyh magnitoupravlyaemyh radiotekhnicheskih ustrojstv na ferritovyh rezonatorah: Avtoref. dis. … dokt. tekhn. nauk. Samara, 2014. 32 s. [in Russian].
  2. Hvalin A.L. Analiz i sintez integral'nyh magnitoupravlyaemyh radiotekhnicheskih ustrojstv na ferritovyh rezonatorah: Dis. … dokt. tekhn. nauk. Samara. 2014. 312 s. [in Russian].
  3. Apin M.P., Kudryashov G.V., Hvalin A.L. Optimizaciya harakteristik usilitelya moshchnosti na otechestvennyh bipolyarnyh tranzistorah v diapazone ot 1 do 2 GGc. Radiotekhnika. 2018. T. 82. № 8. S. 84–88 [in Russian].
  4. Hvalin A.L., Strahova L.L., Vorob'ev A.V. Optimizaciya parametrov modeli bipolyarnogo tranzistora po ego eksperimental'nym harakteristikam. Radiotekhnika. 2015. T. 79. № 7. S. 35–40 [in Russian].
  5. Meshchanov V.P., Hvalin A.L. Metodika utochneniya harakteristik modeli materka polevogo tranzistora. Radiotekhnika. 2010. T. 74. № 5. S. 111–115 [in Russian].
  6. Hvalin A.L., Kalinin A.V. Modelirovanie usilitelej moshchnosti v srede Microwave Office. Izv. Saratovskogo universiteta. Novaya seriya. Seriya: Fizika. 2021. T. 21. Vyp. 3. S. 275–284. https://doi.org/10.18500/1817-3020-2021-21-3-275-284 [in Russian].
  7. Kalinin A.V., Hvalin A.L. Primenenie metoda konechnyh elementov v sovremennyh sistemah avtomatizirovannogo proektirovaniya. Geteromagnitnaya mikroelektronika: Sbornik nauchnyh trudov. Pod red. prof. A. V. Lyashenko. Saratov: OAO «Institut kriticheskih tekhnologij». 2019. Vyp. 26. S. 41–51 [in Russian].
  8. Hvalin A.L., Lyashenko A.V. Mnogokanal'nyj mikropoloskovyj delitel'. summator moshchnosti. Geteromagnitnaya mikroelektronika: Sb. nauch. trudov. Pod red. prof. A. V. Lyashenko. Saratov: OAO «Institut kriticheskih tekhnologij». 2019. Vyp. 27. S. 43–50 [in Russian].
  9. Titkov A.A., Hvalin A.L. Izmerenie staticheskih i chastotnyh harakteristik bipolyarnogo tranzistora. Izmeritel'naya tekhnika. 2019. № 8. S. 58–62 [in Russian].
  10. Hvalin A.L., Titkov A.A., Lyashenko A.V. Eksperimental'nye issledovaniya osnovnyh harakteristik tranzistora 2T937. Geteromagnitnaya mikroelektronika: Sb. nauch. trudov. Pod red. prof. A. V. Lyashenko. Saratov: OAO «Institut kriticheskih tekhnologij». 2019. Vyp. 26. S. 4–10 [in Russian].
  11. Hvalin A.L., Lyashenko A.V. Mnogokanal'nyj mikropoloskovyj delitel'/summator moshchnosti. Geteromagnitnaya mikroelektronika: Sb. nauch. trudov. Pod red. prof. A.V. Lyashenko. Saratov: OAO «Institut kriticheskih tekhnologij». 2019. Vyp. 27. S. 43–50 [in Russian].
  12. Shams N., Nabki K. Blocker-Tolerable Inductor-Less Harmonic Selection Wideband Receiver Front-End for 5G Applications. IEEE Transactions on Very Large Scale Integration (VLSI) Systems. March 2023. V. 31. № 3. P. 369–381. https://doi.org/10.1109/TVLSI. 20223223123.
  13. Purusholhaman V. K., Klumperink E. A., Plompen R., Naula B. Low-Power High-Linearity Mixer-First Receiver Using Implicit Capacitive Slacking With 3x Voltage Gain. IKKK Journal of Solid-Slate Circuits. Jan. 2022. V. 57. № 1. P. 245–259. https://doi.org/10.1109/JSSC. 2021.3091941
  14. Ying R., Molnar A. A 20-40 GHz High Dynamic Range HBT N-Path Receiver with 8.9 dBm OOB BldB and 8.55 dB NF Consuming 130 mW. IEEE Radio Frequency Integrated Circuits Symposium (RFIC). Atlanta, GA, USA. 2021. P. 215–218. https://doi.org/10.1109/RFIC51843.2021.9490419.
  15. Kokolov A.A., Babak L.I. Methodology of Built and Verification of Non-Linear EEHEMT Model for GaN HEMT Transistor. Radioelectronics and communications systems. 2015. V. 58. № 10. P. 435–443.
  16. Huang S., Molnar A. A 3.7–6.5GHz 8-Phase N-Path Miser-First Receiver with LO Overlap Suppression Achieving <5dB NF and >5dBm OOB BldB. IEEE Radio Frequency Integrated Circuits Symposium (RFIC). Atlanta, GA. USA. 2021. P. 87–90. https://doi.org/10.1109/ RFIC51843.2021.9490451.
  17. Pamarti S., Bu, S. A Dual-Channel High-Linearity Eillering-by-Aliasing Receiver Front-End Supporting Carrier Aggregation. IEEE Journal of Solid-State Circuits. May 2022. V. 57. № 5. P. 1457–1469. https://doi.org/10.1109/JSSC.2021.3112183.
  18. Weinreich S., Murmann B. A 0.6-1.8-mW 3.4-dB NF Mixer-First Receiver With an N-Path Harmonic-Rejection Transformer-Mixer. IEEE Journal of Solid-State Circuits. June 2023. V. 58. № 6. P. 1508–1518. https://doi.org/ 10.11O9/JSSC.2022.3214226.
  19. Bozorg A., R. Siaszewski В. A Charge-Sharing MR Filler With Linear Interpolation and High Stopband Rejection. IEEE Journal of Solid-State Circuits. July 2022. V. 57. № 7. P. 2090–2101. https://doi.org/ 10.1109/JSSC 2022 3166960.
  20. Ferreira S.В., Baumgratz K.D., Bampi S., Staszewski R. B. Design of High-IF Discrete-Time Receivers for IoT: Demystifying Aliasing Trade-Offs. IEEE Transactions on Circuits and Systems II: Express Briefs. July 2022. V. 69. № 7. P. 3078–3083. https://doi.org/ 10.1109ZС-SII.2022.3175431.
  21. Bozorg A., Staszewski R. B. A Clock-Phase Reuse Technique for Discrete-Time Bandpass Fillers. IEEE Journal of Solid-State Circuits. Jan. 2022. V. 57. № 1. P. 290–301. https://doi.org/ 10.1109/JSSC 2021.3086621.
  22. Xu Y., Venkatachala P. K., Hu Y., Leuenberger S., Temes G.С., Moon U.-K. A Charge-Domain Switched-Gm-C Band-Pass Filter Using Interleaved Semi-Passive Charge-Sharing Technique. IEEE Transactions on Circuits and Systems I: Regular Papers. Feb. 2020. V. 67. № 2. P. 600–610. https://doi.org/ 10.1 IO9/TCSI.2O19.2949018.
Date of receipt: 10.09.2024
Approved after review: 18.09.2024
Accepted for publication: 31.10.2024