350 rub
Journal Achievements of Modern Radioelectronics №11 for 2024 г.
Article in number:
Radiometric calibration of synthetic aperture radar images
Type of article: scientific article
DOI: 10.18127/j20700784-202411-02
UDC: 629.783; 621.396.67
Authors:

A.S. Petrov1, V.P. Makarov2

1,2 Lavochkin Association (Moscow region, Khimki, Russia)

1 aspetr50@mail.ru, 2 makarovVP@laspace.ru

Abstract:

When studying the Earth's surface using synthetic aperture radars (SAR), it becomes necessary to accurately quantify the intensity of the electromagnetic wave reflected from various parts of the land and ocean. The main task of radiometric calibration (RMC) is to determine the specific radar cross section (SRCS) of the surface and the radar cross section (RCS) of individual targets located on it using the image of the terrain formed by the SAR.

To this end, it is necessary to create systems for relative calibration of the SAR image (to identify the relative brightness of pixels in the same view) and absolute calibration (to generally link the brightness of all pixels in the image to the brightness of the reference target/targets). The problem is to provide such a volume of controlled system parameters that, using special algorithmic and software, will allow determining the RCS of targets and the SRCS of the earth's surface with high accuracy.

The article describes the problem of radiometric calibration. A general scheme with sources and a list of components of the RMC error is presented. The relations for calculating the values of the SRCS at the stages of the signal pre- and post-processing are given. New methods of internal radiometric calibration of radar images using the pseudo-noise channel separation method of large phased array antennas are described. The description of the test site and calibration equipment used by the German Aerospace Center, as well as the control system for the products of aircraft and space SAR missions used by the European Space Agency, is given. A starting list of literature is provided, introducing the reader to this subject.

Pages: 17-27
For citation

Petrov A.S., Makarov V.P. Radiometric calibration of synthetic aperture radar images. Achievements of modern radioelectronics. 2024. V. 78. № 11. P. 17–27. DOI: https://doi.org/10.18127/j20700784-202411-02 [in Russian]

References
  1. Curlander J.C., McDonough R.N. Synthetic Aperture Radar Systems and Signal Processing. New York: Wiley-Interscience. 1991.
  2. Radiolokatsionnye sistemy vozdushnoy razvedki, deshifrovanie radiolokatsionnykh izobrazheniy: ucheb. dlya kursantov VVIA. Pod red. L.A. Shkol'nogo. M.: izd. VVIA im. prof. N.E. Zhukovskogo. 2008. [in Russian]
  3. Verba V.S., Neronskiy L.B., Osipov I.G., Turuk V.E. Radiolokatsionnye sistemy zemleobzora. M.: Radiotekhnika. 2010. Freeman A. SAR calibration: An overview. IEEE Trans. Geosci. Remote Sensing. 1992. V. 30. P. 1107–1121. [in Russian]
  4. Special issue on TERRASAR-X: mission, calibration, and first results. IEEE Transactions On Geoscience And Remote Sensing. 2010. V. 48. № 2.
  5. Research Results and Projects. Status Report 2011-2017. Microwaves and Radar Institute. Technical Report October 2018. URL: https://www.researchgate.net/publication/330384080.
  6. Petrov A.S. Printsipy realizatsii sistem distantsionnogo zondirovaniya Zemli s vysokim razresheniem v shirokoy polose zakhvata. Uspekhi sovremennoy radioelektroniki. 2023. № 2 (77). S. 44–57. DOI: https://doi.org/10.18127/j20700784-202302-04. [in Russian]
  7. Mao Y., Maosheng Xiang M., Han Y., Gao W. Weighted joint calibration for interferometric SAR. Journal of Systems Engineering and Electronics. 2013. V. 24. № 5. P. 761–771.
  8. Younis M., Almeida F., Huber S., Laux Ch., Martone M., Michelangelo Villano, Krieger G. An Internal Instrument Calibration Simulator For Multi-Channel SAR. IGARSS. 2018. P. 9201 –9203.
  9. Kroll J.P., Marwan Younis M., Gerhard Krieger G. Multi-channel SAR Instrument Calibration Using the Spatial Correlation Properties of Homogeneous Scenes. 23rd International Radar Symposium (IRS). 2022. P. 1–4.
  10. Maiti A. Polarimetric calibration of SAR data using manmade point targets and uniformly distributed natural target. Thesis for the degree of Master of Science. Netherland: University of Twente. 2019. 62 P.
  11. Li L., He M., Feng F., Li C. Precise Internal Calibration Scheme for Very-High Resolution SAR System and Its Airborne Campaign Results. IEEE Access. 2020. V. 8. P. 89707–89719.
  12. Liang Z., Fu X., Lv X. A Novel Channel Inconsistency Calibration Algorithm for Azimuth Multichannel SAR Based on Fourth-Order Cumulant. IEEE Journal Of Selected Topics In Applied Earth Observations And Remote Sensing. 2023. V. 16. P. 5561–5577.
  13. Zhou Y., Jiang X., Chen Z., Chen L., Liu X.A. Semisupervised Arbitrary-Oriented SAR Ship Detection Network Based on Interference.
  14. Consistency Learning and Pseudolabel Calibration. IEEE Journal Of Selected Topics In Applied Earth Observations And Remote Sensing. 2023. V. 16. P. 5893–5904.
  15. Han Y., Lu P, Liu X., Hou W., Gao Y., Yu W., Wang R. On the Method of Circular Polarimetric SAR Calibration Using Distributed Targets. IEEE Transactions On Geoscience And Remote Sensing. 2023. V. 61. № 5203216.
  16. Ge B., An D., Liu J., Feng D., Chen L., Zhou Z. Modifed Adaptive 2-D Calibration Algorithm for Airborne Multichannel SAR-GMTI. IEEE Geoscience And Remote Sensing Letters. 2023. V. 20. № 4004805.
  17. Zhang J., Hong W., Jin Y-Q. On the Method of Polarimetric SAR Calibration Using Distributed Targets. IEEE Transactions On Geoscience And Remote Sensing. 2022. V. 60. № 5202316.
  18. Wessel B., Gruber A., González J.H., s Bachmann M., Wendleder A. TANDEM-X: DEM Calibration Concept. IGARSS. 2008. URL: https://www.researchgate.net/publication/224383343.
  19. Freeman A., Curlander J.C. Radiometric Correction and Calibration of SAR Images. Photogrammetric engineering and remote sensing. 1989. V. 55. № 9. P. 1295–1301.
  20. Larson R.W., Jackson P.L., Kasischke E.S. A Digital Calibration Method for Synthetic Aperture Radar Systems. IEEE Transactions On Geoscience And Remote Sensing, 1988. V. 26. № 6. P. 753–763.
  21. Zink M., Bamler R. X-SAR Radiometric Calibration and Data Quality. IEEE Trans. Geosci. Remote Sensing. 1995. V. 33. № 4. P. 840–847.
  22. Attema E. The Active Microwave Instrument On-Board the ERS-1 Satellite. Proceedings of the IEEE. 1991. V. 79. № 6. Р. 791–799.
  23. Schwerdt M., Hounam D., Brautigam B., Alvarez-Perez J.L. TerraSAR-X: Calibration Concept of a Multiple Mode High Resolution SAR. IGARSS. 2005. P. 4874–4877.
  24. Grafmüller B., Herschlein A., Fischer C. The TerraSAR-X Antenna System. Radar International Conference. 2005.
  25. Bachmann M., Schwerdt M., Bräutigam B. TerraSAR-X Antenna Calibration and Monitoring Based on a Precise Antenna Model. IEEE Transactions On Geoscience And Remote Sensing. 2010. V. 48. № 2. P. 690–701.
  26. Schwerdt M., Bräutigam B., Bachmann M., Döring B., Schrank D., Gonzalez J.H. Final TerraSAR-X Calibration Results Based on Novel Efficient Methods. IEEE Transactions On Geoscience And Remote Sensing. 2010. V. 48. № 2. P. 677–689.
  27. Börner T., Chandra M., Geudtne D. et. al. SAR product control software (SARCON). Conference Paper, May 2000. URL: https://www.researchgate.net/publication/224792753.
Date of receipt: 24.07.2024
Approved after review: 14.08.2024
Accepted for publication: 31.10.2024