M.K. Sedankin1, S.G. Vesnin2, V.Yu. Leushin3, S.V. Agasieva4, I.O. Porokhov5, А.G. Gudkov6, A.A. Merkulov7, S.V. Chizhikov8
1–5 Peoples' Friendship University of Russia (Moscow, Russia)
6 BMSTU (Moscow, Russia)
7 RTU MIREA (Moscow, Russia)
8 Hyperion Ltd (Moscow, Russia)
1 msedankin@yandex.ru, 2 vesnin47@gmail.com, 7 merkulov@mirea.ru
The design features of applicatos antennas and conformal antenna arrays for microwave radiometry are considered, the main characteristics of antennas are presented, and scientific and technical barriers that need to be overcome are discussed. The requirements for conformal antenna arrays of multichannel multi-frequency radiothermographs are formulated. The design of a textile conformal lattice for biological objects of complex shape is proposed. Recommendations on the choice of antennas for various medical applications of microwave radiometry are presented.
Statement of the problem: the key element of a medical microwave radiothermograph is the receiving antenna, which largely determines its efficiency and diagnostic capabilities. Currently produced medical radiothermographs are single-channel and single-frequency devices. To increase diagnostic efficiency, it is necessary to have information about internal temperatures at several points in the organ being examined simultaneously. The surface of the body can have a complex shape (head, joints, etc.), therefore, to ensure effective reception of the body's own radiation, a multi-channel conformal antenna array corresponding to the shape of the body is required. Goal: analysis of the current state of research in the field of creating antennas and antenna arrays for medical radiothermographs, formation of technical requirements for conformal antenna arrays from the point of view of increasing the efficiency of detecting thermal anomalies of biological tissues and development of recommendations for choosing the optimal design of a conformal antenna array. Results: The design features of antennas and conformal antenna arrays for microwave radiometry are considered, the main characteristics of antennas are presented, and scientific and technical barriers that need to be overcome for further development of this direction are discussed. Practical significance: Technical requirements for conformal antenna arrays are formulated, and the design of a conformal antenna array consisting of textile and rubber-like materials is proposed. Scope of application of the results: the results of the work can be used as a scientific and technical basis for the design of new generation medical microwave radiothermographs.
Sedankin M.K., Vesnin S.G., Leushin V.Yu., Agasieva S.V., Porokhov I.O., Gudkov А.G., Merkulov A.A., Chizhikov S.V. Experience in the development of applicator antennas for use in microwave radiometry. Achievements of modern radioelectronics. 2024. V. 78. № 10. P. 17–27. DOI: https://doi.org/10.18127/j20700784-202410-03 [in Russian]
- Groumpas E.I., Koutsoupidou M., Karanasiou I.S. Biomedical passive microwave imaging and sensing: current and future trends [Bioelectromagnetics]. IEEE Antennas and Propagation Magazine. 2022. V. 64. № 6. P. 84–111.
- Sedankin M.K. et al. System of rational parameters of antennas for designing a multi-channel multi-frequency medical radiometer. International Conference on Actual Problems of Electron Devices Engineering (APEDE), 24-25 Sept. 2020. Saratov, Russia. IEEE. 2020. P. 154–159.
- Vesnin S.G. i dr. Pechatnaya antenna so vstroennym infrakrasnym datchikom temperatury dlya meditsinskogo mnogokanal'nogo mikrovolnovogo radiotermografa. Meditsinskaya tekhnika. 2020. № 4. S. 4–7. [in Russian]
- Lee J.W. et al. Experimental investigation of the mammary gland tumor phantom for multifrequency microwave radiothermometers. Med. Biol. Eng. Comput. 2004. V. 42. № 5. P. 581–590.
- Sedelnikov Y.E., Potapova O.V., Sadykov A.R., Skachkov V.A. Focused antennas in contact radiothermometry applications. Journal of Radio Electronic. 2021. № 3. P. 1–26.
- Oikonomou A., Karanasiou I., Uzunoglu N. Phased-array near field radiometry for brain intracranial applications. Progress In Electromagnetics Research. 2010. V. 109. P. 345–360.
- Tofighi M.R., Pardeshi J.R. Interference enhanced biomedical antenna for combined heating and radiometry application. IEEE Antennas and Wireless Propagation Letters. 2017. V. 16. P. 1895–1898.
- Issac J.P., Arunachalam K. Enhancing sensing depth and measurement sensitivity of microwave tissue thermometry using near-field active array probe. IEEE Transactions on Microwave Theory and Techniques. 2023. P. 1–10.
- Agasieva S.V. i dr. Konformnaya meditsinskaya antenna na osnove gibkoy podlozhki. Meditsinskaya tekhnika. 2022. № 6 (336). S. 1–4. [in Russian]
- Patent na izobretenie RU 2673103 C1. Tekstil'naya antenna dlya mikrovolnovoy radiotermometrii. Vesnin S.G., Sedankin M.K.,
Takhir Kh.Sh., Navnit S. 22.11.2018. Zayavka № 2017133279 ot 25.09.2017. [in Russian] - Vesnin S.G. i dr. Postroenie gibkikh konformnykh antenn dlya izmereniya sobstvennogo izlucheniya golovnogo mozga. Nanotekhnologii: razrabotka, primenenie – XXI vek. 2022. T. 14. № 4. S. 5–18. [in Russian]
- Rodrigues D.B. et al. Microwave radiometry for noninvasive monitoring of brain temperature in Emerging electromagnetic technologies for brain diseases diagnostics, monitoring and therapy, Springer, Cham, 2018. P. 87–127.
- Salvado R. et al. Textile materials for the design of wearable antennas: a survey. Sensors. 2012. № 12. P. 15841–15857.
- Locher I. et al. Design and characterization of purely textile patch antennas. IEEE Trans. Adv. Pack.2006. V. 29. P. 777–788.
- Patent US 2005235482. Method for constructing antennas from textile fabrics and components. Michael A. Deaett, William H. Weedon III. Pub. Date: 27.11.2005.
- Sedankin M.K., Chupina D.N., Nelin I.V., Skuratov V.A. Development of patch textile antenna for medical robots. 2018 International Conference on Actual Problems of Electron Devices Engineering, APEDE 2018. 2018. P. 413–420.
- Babar A.A. et al. Performance of high-permittivity ceramic-polymer composite as a substrate for UHF RFID tag antennas. International journal of antennas and propagation. V. 2012. Article ID 905409. P. 1–8.
- Vesnin S.G. i dr. Povyshenie pomekhozashchishchennosti pechatnykh antenn dlya mnogokanal'nogo mikrovolnovogo radiotermografa. Nanotekhnologii: razrabotka, primenenie – XXI vek. 2023. T. 15. № 4. S. 20–24. [in Russian]
- Vesnin S.G. i dr. Vliyanie geometricheskikh razmerov antenn-applikatorov dlya mikrovolnovoy radiotermometrii na rezul'taty izmereniya radioyarkostnoy temperatury. Meditsinskaya tekhnika. 2023. № 3 (339). S. 25–28. [in Russian]
- Peregonov S.A., Krivoruchko V.I., Orlov Yu.A. FAR dlya antenny-applikatora radiotermografa organov tela cheloveka. Elektronnaya tekhnika. Ser. 1. SVCh-tekhnika. V. 2(558), 2023. S. 6–12. [in Russian]
- Sedankin M.K. i dr. Vybor kanalov i chastotnykh diapazonov mnogokanal'nogo mnogochastotnogo meditsinskogo radiotermografa. Nanotekhnologii: razrabotka, primenenie – XXI vek. 2023. T. 15. № 4. S. 5–19. [in Russian]