S.A. Bronov1, A.А. Chumachenko2, A.А. Bisov3, V.V. Kalitina4, M.A. Vaiman5
1,2,4,5 Krasnoyarsk State Agrarian University (Krasnoyarsk, Russia)
2,3 JSC «SPE «Radiosvyaz» (Krasnoyarsk, Russia)
3 Siberian federal university (Krasnoyarsk, Russia)
1 sa_bronov@mail.ru, 2 maijorishe@mail.ru, 3 glutamine@mail.ru, 4 vesik_kl@mail.ru, 5 maxsonix@yandex.com
Hardware implementation of pulse width modulation for electric drives of actuators of radar systems does not allow for flexible control of them and ensure high quality regulation. In this regard, a software implementation of the formation of pulse-width modulation with the possibility of using microcontroller control is proposed. As an example, the process of calculations in the program control of width-modulated pulse signals for a two-channel power supply system of an electric drive with a two-phase inductor motor of dual power supply is considered. An algorithm for implementing program control and simulation results for two two-phase quasi-sinusoidal AC voltages are presented. It is shown that the program control provides flexible separate control of the amplitude, frequency and phase shift of each voltage according to any linear and nonlinear laws, which makes it possible to implement a regulator based on relatively simple microcontrollers. To generate a width-modulated pulse signal, a clock number generator is used, which cyclically changes from 1 to a number corresponding to the number of cycles in the period of the generated output sinusoidal voltage. For each clock cycle, the pulse duration is calculated as a function of the sine for the corresponding phase of the sinusoidal signal. Then the resulting number is converted into the pulse duration of the corresponding polarity. For this purpose, an additional high-frequency generator with a fixed pulse duration is used, with the help of which the current time is determined. It is compared with the calculated time of the latitudinally modulated pulse and its positive or negative part is formed accordingly. These calculations are performed for each successive number of the width-modulated pulse. Therefore, this number can be set by an external control system in addition to a series of numbers set by the built-in clock generator, which will then continue to sequentially number the cycles, which ensures a discrete phase shift of the corresponding output voltage. With regard to the example of an electric drive based on a dual-power inductor motor, an operating mode similar to that of a stepper motor is achieved, when movement to a predetermined angle is provided without the use of a position sensor.
Bronov S.A., Chumachenko A.А., Bisov A.А., Kalitina V.V., Vaiman M.A. System analysis and software control of the pulse-width modulator of a two-channel power supply system for radar actuators. Achievements of modern radioelectronics. 2024. V. 78. № 1.
P. 78–88. DOI: https://doi.org/10.18127/j20700784-202401-07 [in Russian]
- Zhulovyan V.V. Elektricheskie mashiny: elektromekhanicheskoe preobrazovanie energii. M.: Izdatel'stvo Yurayt. 2018. ISBN 978-5-534-04293-1. [in Russian]
- Bruslinovskiy B.V., Evtodiy A.A. Snizhenie shuma ventil'no-induktornogo dvigatelya pri shirotno-impul'snom upravlenii so sluchaynym izmeneniem parametrov. Izvestiya SPbGETU «LETI». 2015. № 8. S. 38–46. [in Russian]
- Shevchenko A.F., Chestyunina T.V., Toporkov D.M., Vyal'tsev G.B. Dvigateli s elektromagnitnoy reduktsiey chastoty vrashcheniya s ventil'nym podmagnichivaniem. Doklady AN VSh RF. 2021. № 4 (53). S. 49–61. [in Russian]
- Bronov S.A., Nikulin N.A., Avlasko P.V. et al. Doubly-fed inductor motor as the element of automatic control system. IOP Conf. Series: Materials Science and Engineering. 2019. № 537. P. 1–5. URL: https://iopscience.iop.org/article/10.1088/1757-899X/537/3/032096. DOI: 10.1088/1757-899X/537/3/032096.
- Titovskii S.N., Titovskaya T.S., Titovskaya N.V. Pulse voltage stabilizer controlled by a microcontroller. IOP Conf. Series: Materials Science and Engineering. 2020. № 919 (062043). 6 s. Doi:10.1088/1757-899X/919/6/062043.
- Titovskii S.N., Titovskaya N.V., Titovskaya T.S. Influence of the digital data representation error in the linear control contour of a pulse voltage stabilizer. Journal of Physics: Conference Series: APITECH-2019. 2019. № 1399 (022051). 5 s. Doi:10.1088/1742-6596/1399/2/022051.
- Nepomnyashchiy O.V., Krasnobaev Yu.V., Titovskiy S.N., Khabarov V.A. Mikroelektronnye ustroystva upravleniya silovymi energopreobrazuyushchimi modulyami sistem elektropitaniya perspektivnykh kosmicheskikh apparatov. Journal of Siberian Federal University. Engineering & Technologies. 2012 № 2 (5). S. 162–168. [in Russian]
- Nepomnyashchiy O.V., Krasnobaev Y.V., Yablonsky A.P., Sirotinina N.J., Potekhin V.V. Ensuring minimum duration of transient processes in switched voltage regulators with digital control. Austrian Journal of Political Science. 2019. T. 6. № 24. S. e6.
- Nepomnyashchiy O.V., Krasnobaev Y.V., Yablonsky A.P., Solopko I.V., Lichargin D.V. Ensuring extreme regulation of power of primary energy sources at their joint operation for total load. Siberian Journal of Science and Technology. 2020. T. 21. № 1. S. 85–95.
- Krasnobaev Yu.V., Nepomnyashchiy O.V., Ivanchura V.I., Pozharkova I.N., Yablonskiy A.P. Impul'snyy stabilizator napryazheniya s tsifrovym upravleniem dlya avtonomnoy sistemy elektropitaniya. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov. 2018. T. 329. № 11. S. 61–73. [in Russian]
- Mishchenko D.D. Modelirovanie slozhnykh dinamicheskikh ob"ektov. Vestnik KrasGAU. 2014. № 3 (90). S. 35–40. [in Russian]