350 rub
Journal Achievements of Modern Radioelectronics №1 for 2024 г.
Article in number:
Filtering algorithm for estimating vehicle coordinates in the urban area using GNSS signals and ultra-wideband local navigation system
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700784-202401-06
UDC: 629.78
Authors:

V.B. Pudlovskiy1, A.P. Malyshev2, A.A. Chugunov3, S.V. Chernykh4, S.A. Serov5

1 Federal State Unitary Enterprise «Russian Metrological Institute of Technical Physics and Radio Engineering» (Moscow Region, Russia)

1–5 National Research University «Moscow Power Engineering Institute» (Moscow, Russia)

1 pudlovskiy@vniiftri.ru, 2 malyshevap99@gmail.com, 3 san4es_95@mail.ru, 4 ChernykhSVl@mpei.ru,

5 srv.28@yandex.ru

Abstract:

Navigation for unmanned vehicles in urban environments using only Global Navigation Satellite Systems (GNSS) signals doesn't provide the required accuracy and reliability due to the effects of satellite signal re-reflection, attenuation or blocking. Integration of GNSS receivers with other navigation aids, including local navigation systems (LNS), is used to provide «seamless» navigation and improve its reliability. An algorithm for the joint processing of GNSS signals and LNS based on ultra-wideband signals (UWB), which potentially allows achieving "seamless" vehicle navigation in urban areas, is proposed. According to the results of experimental data processing it was obtained that the maximum range between the receiver and the transmitter of UWB signals does not exceed 100 m, and the error of estimation of the relative coordinates of the vehicle using the proposed algorithm didn't exceed 1,5 m.

Pages: 64-77
For citation

Pudlovskiy V.B., Malyshev A.P., Chugunov A.A., Chernykh S.V., Serov S.A. Filtering algorithm for estimating vehicle coordinates in the urban area using GNSS signals and ultra-wideband local navigation system. Achievements of modern radioelectronics. 2024. V. 78. № 1. P. 64–77. DOI: https://doi.org/10.18127/j20700784-202401-06 [in Russian]

References
  1. Du J., Barth M. Next-generation automated vehicle location systems: Positioning at the lane level. IEEE Trans. Intell. Transp. Syst. Mar. 2008. V. 9. № 1. P. 48–57.
  2. Luettel T., Himmelsbach M., Wuensche H. Autonomous ground vehicles – Concepts and a path to the future. Proc. IEEE. May 2012. V. 100. № Special Centennial Issue. P. 1831–1839.
  3. Wan G. et al. Robust and Precise Vehicle Localization Based on Multi-Sensor Fusion in Di-verse City Scenes. IEEE International Conference on Robotics and Automation (ICRA). 2018. P. 4670–4677. Doi: 10.1109/ICRA.2018.8461224.
  4. V. ilçi, C. Toth, Charles High definition 3D map creation using GNSS/IMU/LiDAR sensor integration to support autonomous vehicle navigation. Sensors. Feb. 2020. V. 20. P. 899. Doi: 10.3390/s20030899.
  5. Tsaregorodtsev D., Petuhov N., Chugunov A., Kulikov R., Zamolodchikov V. Integration of GNSS with Non-Radio Sensors with Separation of the State Vector for Transport Navigation Tasks. 27th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS). 2020. P. 1–3. Doi: 10.23919/ICINS43215.2020.9133762.
  6. Chugunov A.A., Petukhov N.I., Malyshev A.P., Pudlovskiy V.B., Glukhov O.V., Frolov A.A. Experimental Evaluation of UWB Local Navigation System Performance Used for Pedestrian and Vehicle Positioning in Outdoor Urban Environments. XV International Scientific-Technical Conference on Actual Problems Of Electronic Instrument Engineering (APEIE). 2021. P. 449–454. Doi: 10.1109/APEIE52976.2021.9647604.
  7. Jiang W., Cao Z., Cai B., Li B., Wang J. Indoor and Outdoor Seamless Positioning Method Using UWB Enhanced Multi-Sensor Tightly-Coupled Integration. IEEE Transactions on Vehicular Technology, Oct. 2021. V. 70. № 10. P. 10633–10645. Doi: 10.1109/TVT.2021.3110325.
  8. Masiero A., Toth C., Gabela J. et al. Experimental Assessment of UWB and Vision-Based Car Cooperative Positioning System. Remote Sensing. 2021. V. 13. № 4858. P. 35.
  9. MacGougan G., O'Keefe K., Klukas R. Tightly-coupled GPS/UWB Integration. Journal of Navigation. Jan. 2010. V. 63. № 1. P. 1–22. Doi: 10.1017/S0373463309990257.
  10. GLONASS. Printsipy postroeniya i funktsionirovaniya. Pod red. A.I. Perova, V.N. Kharisova. Izd. 4-e, pererab. i dop. M.: Radiotekhnika. 2010. [in Russian]
  11. Korogodin I.V., Malyshev A.P., Chugunov A.A., Brovko T.A., Siziakova A.Y., Vakhitov R.R. Comparison of local ultra-wideband radio navigation systems architectures. 4th International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE). 2022. P. 1–6. Doi: 10.1109/REEPE53907.2022.9731398.
  12. Pudlovskiy V., Chugunov A., Kulikov R. Investigation of Impact of UWB RTLS Errors on AGV Positioning Accuracy. International Russian Automation Conference (RusAutoCon). 2019. P. 1–5. Doi: 10.1109/RUSAUTOCON.2019.8867677.
  13. Pudlovskiy V.B., Frolov A.A., Chernyh S.V., Serov S.A., Malyshev A.P. Synchronization of Time Scales of Local Navigation Systems and GNSS for «Seamless» Navigation in Urban Conditions. 30th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS). 2023. P. 1–4. Doi: 10.23919/ICINS51816.2023.10168516.
  14. DW1000 – Datasheet. 2009. URL: https://www.decawave.com/sites/default/files/resources/dw1000-datasheet-v2.09.pdf
  15. GOST 33471-2015. Metody ispytaniy navigatsionnogo modulya ustroystva/sistemy vyzova ekstrennykh operativnykh sluzhb. [in Russian]
Date of receipt: 06.11.2023
Approved after review: 17.11.2023
Accepted for publication: 30.11.2023