350 rub
Journal Achievements of Modern Radioelectronics №8 for 2023 г.
Article in number:
Evolutionary algorithm for clustering a wireless sensor network
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700784-202308-04
UDC: 004.738
Authors:

T.M. Tatarnikova1, E.L. Turnetskaja2

1,2 St. Petersburg State University of Aerospace Instrumentation (SUAI) (St. Petersburg, Russia)

Abstract:

The finite energy reserve of the accumulators of the sensor nodes determined the strategy for relaying data packets through the head nodes of the clusters into which the created sensory field is divided. The operating time of the wireless sensor network without recharging depends on the power consumption of the sensor nodes. The main energy consumption occurs during data transmission, processing and route calculation.

The purpose of the work is to develop a new energy-efficient method for clustering a wireless sensor network, including the choice of the head of the cluster in terms of the location of the nodes and the level of their residual energy, and the formation of the cluster itself.

A method is proposed for selecting the head nodes of wireless sensor network clusters based on a metaheuristic algorithm using group intelligence – the moth and flame algorithm. The simulation experiment showed the advantage of the proposed method over other clustering methods: LEACH, SEP, TEEN and DEEC.

The method proposed in the paper expands the possible options for solving the problem of clustering large-scale wireless sensor networks.

Pages: 26-32
For citation

Tatarnikova T.M., Turnetskaja E.L. Evolutionary algorithm for clustering a wireless sensor network. Achievements of modern radioelectronics. 2023. V. 77. № 8. P. 26–32. DOI: https://doi.org/10.18127/j20700784-202308-04 [in Russian]

References
  1. Kucheryavyy A.E., Borodin A.C., Kirichek R.V. Seti svyazi 2030. Elektrosvyaz'. 2018. T. 11. S. 52–56. [in Russian]
  2. Lysogor I., Voskov L., Rolich A., Efremov S. Study of data transfer in a heterogeneous Lora-satellite network for the internet of remote things. Sensors. 2019. V. 19. № 15. P. 3384. DOI: 10.3390/s19153384.
  3. Doo-Soon Park Fault Tolerance and Energy Consumption Scheme of a Wireless Sensor Network. International Journal of Distributed Sensor Networks. V. 2013. Article ID 396850.
  4. Ran G., Zhang H., Gong S. Improving on LEACH protocol of wireless sensor networks using fuzzy logic. Journal Inf. Comput. Sci. 2010. № 7. P. 767–775.
  5. Basford P.J., Johnston S.J., Perkins C.S., Garnock-Jones T., Tso F.P., Pezaros D., Cox S.J. Performance analysis of single board computer clusters. Future Generation Computer Systems. 2020. V. 102. P. 278–291.
  6. Tatarnikova T.M., Dzyubenko I.N. Metody uvelicheniya zhiznennogo tsikla seti interneta veshchey. Nauchno-tekhnicheskiy vestnik informatsionnykh tekhnologiy, mekhaniki i optiki. 2018. T. 18. № 5. S. 843-849. DOI: 10.17586/2226-1494-2018-18-5-843-849. [in Russian]
  7. Dziubenko I.N., Tatarnikova T.M. Algorithm for Solving Optimal Sensor Devices Placement Problem in Areas with Natural Obstacles. Wave Electronics and its Application in Information and Telecommunication Systems (WECONF). 2018. P. 1–4. DOI: 10.1109/WECONF.2018.8604325.
  8. Kureychik V.V., Zaruba D.V., Zaporozhets D.Yu. Algoritm parametricheskoy optimizatsii na osnove modeli povedeniya roya svetlyachkov. Izvestiya YuFU. Tekhnicheskie nauki. 2015. № 6 (167). S. 6–15. [in Russian]
  9. Kashkarov A.P. Datchiki v elektronnykh skhemakh. Ot prostogo k slozhnomu. M.: DMK Press. 2013. [in Russian]
  10. Pavlov V.S., Turnetskaya E.L. Sintez prostranstvenno-kol'tsevogo pelengatora istochnika polyarizovannogo radioizlucheniya. Informatsionno-upravlyayushchie sistemy. 2014. № 6 (73). S. 6–12. [in Russian]
Date of receipt: 06.07.2023
Approved after review: 19.07.2023
Accepted for publication: 24.07.2023