350 rub
Journal Achievements of Modern Radioelectronics №8 for 2023 г.
Article in number:
Three-spatial-channel method for amplitude monopulse direction-finding of radar object
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700784-202308-03
UDC: 621.396.96
Authors:

E.L. Turnetskaja1, T.M. Tatarnikova2

1,2 St. Petersburg State University of Aerospace Instrumentation (SUAI) (St. Petersburg, Russia)

Abstract:

Improving the accuracy of determining the angular coordinates of location objects based on the monopulse amplitude-amplitude method of direction finding in two orthogonal planes is an urgent scientific and practical problem of improving radar systems using this coordinate method. One of the possible approaches to solving this problem is the structural modification of radar devices foronopulse amplitude-amplitude direction finding with the invariance of their metric and energy indicators.

The purpose of the work is to analyze the accuracy indicators of the joint estimation of two angular coordinates of a location object with a spatially three-channel modification of the well-known two-plane method of monopulse amplitude-amplitude direction finding.

In the work at the level of an analytical model, it is shown that a spatially three-channel modification of the method of monopulse amplitude-amplitude direction finding under conditions of small signal-to-noise ratios can provide a smaller (1,33 times) variance of the fluctuation error relative to the well-known spatially four-channel version of the implementation of this method at those the same metric and energy conditions of location object direction finding.

The presented structure of the monopulse direction finding device provides an increase in the accuracy of the joint estimation of two angular coordinates of the location object in the region of small signal-to-noise ratios, which is of practical importance under low-energy direction finding conditions, when the effect of intra-receiver noise is significant. The results of the study can be used to upgrade both existing and future radar systems.

Pages: 18-25
For citation

Turnetskaja E.L., Tatarnikova T.M. Three-spatial-channel method for amplitude monopulse direction-finding of radar object. Achievements of modern radioelectronics. 2023. V. 77. № 8. P. 18–25. DOI: https://doi.org/10.18127/j20700784-202308-03 [in Russian]

References
  1. Gutkin L.S. Proektirovanie radiosistem i radioustroystv. M.: Radio i svyaz'. 1986. [in Russian]
  2. Leonov A.I., Fomichev K.I. Monoimpul'snaya radiolokatsiya. M.: Radio i svyaz'. 1984. [in Russian]
  3. Holder J.E. Angle-of-Arrival Estimation Using Radar Interferometry. Methods and Applications. Edison, NJ: SciTech Publishing, 2014.
  4. Pavlov V.S., Turnetskaya E.L. Sintez prostranstvenno-kol'tsevogo pelengatora istochnika polyarizovannogo radioizlucheniya. Informatsionno-upravlyayushchie sistemy. 2014. № 6. S. 6–12. [in Russian]
  5. Antsev G.V., Pavlov V.S., Turnetskiy L.S. Optimal'noe po tochnosti sovmestnoe izmerenie dvukh neenergeticheskikh parametrov.
    Radiolokatsiya, navigatsiya i svyaz' (RLNC-2007): Trudy 13-y Mezhdunar. konf., Voronezh, 5–6 aprelya 2007 g. T. 3. S. 1707–1711. [in Russian]
  6. Pavlov V. S., Turnetskaya E.L. Potentsial'naya tochnost' pelengatsii na osnove kol'tsevoy antennoy reshetki iz lineyno polyarizovannykh elementov. Izvestiya vuzov Rossii. Radioelektronika. 2012. № 4. S. 65–76. [in Russian]
  7. Korostelev A.A. Prostranstvenno-vremennaya teoriya radiosistem. M.: Radio i svyaz'. 1987. [in Russian]
  8. Pavlov V.S., Turnetskaya E.L. Kombinirovannaya normirovka otsenok uglovykh koordinat lokatsionnogo ob"ekta v metode konicheskogo skanirovaniya. SPbNTORES: trudy ezhegodnoy NTK. 2022. № 1 (77). S. 27–29. [in Russian]
  9. Pavlov V.S. Spatial Processing Redundancy and Accuracy of Multichannel Estimation of Radar Object Angular Coordinates. XV International Symposium «Problems of Redundancy in Information and Control Systems». 2016. Sept. P. 142–144. [in Russian]
  10. Pavlov V.S. Fluktuatsionnaya pogreshnost' trekhkanal'nogo amplitudno-fazovogo izmeritelya uglovykh koordinat lokatsionnogo ob"ekta. Radiotekhnika. 2002. № 4. S. 3–10. [in Russian]
  11. Voprosy statisticheskoy teorii radiolokatsii. V 2-kh tomaf. Pod red. G.P. Tartakovskogo. M.: Sov. radio. 1964. T. 2. [in Russian]
  12. Fel'dman Yu.I., Gidaspov Yu.B., Gomzin V.N. Soprovozhdenie dvizhushchikhsya tseley. M.: Sov. radio. 1978. [in Russian]
  13. Evsikov Yu.A., Chapurskiy V.V. Preobrazovanie sluchaynykh protsessov v radiotekhnicheskikh ustroystvakh. M.: Vysshaya shkola. 1977. [in Russian]
  14. Pavlov V.S. Sintez prostranstvenno-mnogokanal'nykh diskriminatorov sistem pelengatsii lokatsionnykh ob"ektov. Izv. vuzov Rossii. Radioelektronika. 2009. V. 3. S. 68–77. [in Russian]
  15. Tikhonov V.I., Kharisov V.N. Statisticheskiy analiz i sintez radiotekhnicheskikh ustroystv i sistem. M.: Goryachaya liniya-Telekom. 2015. [in Russian]
  16. Pavlov V.S., Turnetskaya E.L. Spetsifika monoimpul'snoy normirovki prostranstvenno-trekhkanal'nykh otsenok uglovykh koordinat lokatsionnogo ob"ekta. Obrabotka, peredacha i zashchita informatsii v komp'yuternykh sistemakh: Vtoraya Vseross. nauch. konf. (SPb., 14–22 aprelya 2022 g.). SPb.: GUAP, 2022. S. 71–73. [in Russian]
  17. Korn G.A., Korn T. Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov: opredeleniya, teoremy, formuly. Pod obshch. red. I.G. Aramanovicha. Izd. 6-e, stereotip. SPb.: Lan'. 2003. [in Russian]
  18. Sazonov D.M. Antenny i ustroystva SVCh. M.: Vysshaya shkola. 1988. [in Russian]
  19. Barton D., Vard G. Spravochnik po radiolokatsionnym izmereniyam. M.: Sov. radio. 1976. [in Russian]
Date of receipt: 06.07.2023
Approved after review: 18.07.2023
Accepted for publication: 24.07.2023