350 rub
Journal Achievements of Modern Radioelectronics №7 for 2023 г.
Article in number:
Microminiaturization of multichannel multi-frequency radiothermographs (part 2)
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700784-202307-04
UDC: 612.563
Authors:

А.G. Gudkov1, S.G. Vesnin2, V.Yu. Leushin3, I.А. Sidorov4, V.G. Tikhomirov5, М.К. Sedankin6,
S.V. Chizhikov7, R.V. Agandeev8, V.D. Sсhashurin9

1–4,6–9 Bauman Moscow State Technical University (Moscow, Russia)

5 Electronic Instrumentation at V.I. Ulyanov (Lenin) SPbGETU «LETI» (St. Petersburg, Russia)

8 JSC «NPI FIRMA HYPERION» (Moscow, Russia)

Abstract:

The key elements of a multichannel multi-frequency radiothermograph are HEMT transistors, switches and low-noise amplifiers. Since the element component base implemented on HEMT heterostructures has low noise coefficients, such heterostructures can be used in the manufacture of hybrid and monolithic LNA radiothermograph.

In this paper, the process of creation and the results of the development of prototypes of a radiothermograph are considered and the gradual transition from a radiometer based on a conventional element base to a hybrid version using a microwave MIC is described.

The process of gradual creation of a prototype of a multi-channel multi-frequency radiothermograph from single-channel to multi-channel, from single-frequency to multi-frequency confirms the results of their practical use. Obtaining information about internal temperatures and the dynamics of its changes at several points of the body simultaneously, both in time and at different depths, will allow us to switch to dynamic microwave thermotomography of internal tissues and organs and assess their condition under the influence of various loads and functional problems. Also, a comprehensive solution to the tasks set will lead to the development of a proMICing method for diagnosing various diseases.

Pages: 55-68
For citation

Gudkov А.G., Vesnin S.G., Leushin V.Yu., Sidorov I.А., Tikhomirov V.G., Sedankin М.К., Chizhikov S.V., Agandeev R.V., Sсhashurin V.D.  Microminiaturization of multichannel multi-frequency radiothermographs (part 2). Achievements of modern radioelectronics. 2023. V. 77. № 7. P. 55–68. DOI: https://doi.org/10.18127/j20700784-202307-04 [in Russian]

References
  1. Gudkov A.G., Vesnin S.G., Leushin V.Yu. i dr. Mikrominiatyurizatsiya mnogokanal'nykh mnogochastotnykh radiotermografov (chast' 1). Uspekhi sovremennoy radioelektroniki. 2023. T. 77. № 5. S. 48–63. DOI: https://doi.org/10.18127/j20700784-202305-04. [in Russian]
  2. Popovic Z., Momenroodaki P., Scheeler R. Toward wearable wireless thermometers for internal body temperature measurements. IEEE Communications Magazine. Oct. 2014. V. 52 (10). P. 118–125.
  3. Novichikhin E.P. et al. Detection of a local source of heat in the depths of the human body by volumetric radiothermography. RENSIT. 2020. V. 12(2). P. 305–312. DOI: 10.17725/rensit.2020.12.305.
  4. Gudkov A.G. et al. Studies of a Microwave Radiometer Based on Integrated Circuits. Biomedical Engineering. 2020. V. 1–4.
  5. Chizhikov S.V., Solov'ev Yu.V. Elementnaya baza MIS SVCh dlya mikrovolnovoy radiotermometrii. Nanotekhnologii: razrabotka, primenenie – XXI vek. 2020. T. 12. № 2. S. 48–57. DOI: 10.18127/j22250980-202002-06. [in Russian]
  6. Chizhikov S.V., Solov’ev Yu.V., Gudkov A.G. Application of developed MIC LNA in microwave radiometry equipment. Journal of Physics Conference Series. 2020. 1695(1):012161.
  7. Tikhomirov V.G. et al. Monolithic transistor switch for microwave radiometry. 8-th International School and Conference on Optoelectronics, Photonics, Engineering and Nanostructures «Saint Petersburg OPEN 2021». BOOK of ABSTRACTS. 2021 P. 492–493.
  8. Tikhomirov V.G., Gudkov A.G., Agasieva S.V., Yankevich V.B., Popov M.K., Chizhikov S.V. Research of low noise pHEMT transistors in equipment for microwave radiometry using numerical simulation. Journal of Physics: Conference Series. 2020. V. 1695. № 1. 012150.
  9. Ridley B.K., Ambacher O., Eastman L.F. The polarization-induced electron gas in a heterostructure. Semiconductor Science and Technology. 2000. V. 15. № 3. P. 270–271.
  10. Foutz B.E., Otleary S.K., Shur M.S. et al. Electron Transport in the III–V Nitride Alloys. MRS Online Proceedings Library. 1999. V. 572. P. 445.
  11. Bernardini F., Fiorentini V., Vanderbilt D. Polarization-Based Calculation of the Dielectric Tensor of Polar Crystals. Physical Review Letters. 1997. V. 79. № 20. 3958.
  12. Gudkov A.G. Kompleksnaya tekhnologicheskaya optimizatsiya meditsinskoy tekhniki na vsekh etapakh ee zhiznennogo tsikla. Biomeditsinskaya radioelektronika. 2012. № 5. S. 51–61. [in Russian]
  13. Gudkov A.G. Complex technological optimization of microwave devices. 17th International Crimean Conference - Microwave and Telecommunication Technology. CRIMICO. 2007. P. 521–522. 4368833.
  14. Gudkov A.G. Radioapparatura v usloviyakh rynka. Kompleksnaya tekhnologicheskaya optimizatsiya. M.: Sayns-Press. 2008. [in Russian]
  15. Gudkov A.G. et al. Application of complex technological optimization for monolithic microwave circuits designing. 2008 CriMiCo – 18th International Crimean Conference Microwave and Telecommunication Technology, Conference Proceedings. 2008. 4676491. P. 535–536.
  16. Gudkov A.G. Metodologiya kompleksnoy tekhnologicheskoy optimizatsii parametrov SVCh-priborov na osnove geterostruktur. Nanotekhnologii: razrabotka, primenenie. 2019. T. 11. № 2. S. 5–25. DOI: 10.18127/j22250980-201902-01. [in Russian]
  17. Sedankin M.K. et al. Development of patch textile antenna for medical robots. 2018 International conference on actual problems of electron devices engineering (APEDE). 27-28 Sept. 2018. Saratov. Russia. P. 413–420.
Date of receipt: 23.05.2023
Approved after review: 08.06.2023
Accepted for publication: 22.06.2023