350 rub
Journal Achievements of Modern Radioelectronics №7 for 2023 г.
Article in number:
Abnormal errors of measuring carrier frequency of a signal in RF spectrum monitoring wideband receivers. Part 2. Quantifying the effectiveness of ways to reduce abnormal errors
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700784-202307-02
UDC: 621.396.62
Authors:

A.S. Podstrigaev1, A.V. Smolyakov2, D.A. Kalinin3

1–3 Saint Petersburg Electrotechnical University «LETI» (Saint Petersburg, Russia)

Abstract:

Measuring various signal parameters, including carrier frequency, is one of the main functions of wideband receivers. One can divide errors in measuring signal parameters into two main groups – normal and abnormal. Standard errors appear due to different types of noise, such as thermal, phase, quantization and sampling noise. Thus, we can describe this type of error using expected value and standard deviation. Abnormal errors occur due to a combination of receiver features and signal parameters received at the current location in space. This type of error already has its classification and different ways to eliminate them. Although, quantitative evaluation of these algorithms and technical solutions has never been done.

In part 1 of the paper, we considered approaches to carrier frequency estimation. The conditions for the occurrence of abnormal errors in wideband receivers of RF spectrum monitoring tools were described. The possibility of deriving expressions for estimating the occurrence of each ab-normal error in the accepted classification for six main receiver schemes was analyzed. Expressions for further mathematical modelling for eight of the errors were obtained.

The purpose of this work is to quantify the effect of applying methods to reduce abnormal errors in measuring the carrier frequency of a signal in wideband receivers of RF spectrum monitoring tools.

As a result of the conducted research, cases of occurrence of abnormal errors are given. Graphs of the dependence of the probability of occurrence of abnormal errors on the parameters that make a significant contribution to their change are plotted. The effect of applying each of the error elimination approaches is shown by comparing receivers with and without using these methods.

It is worth mentioning, that in many cases, the use of means to combat abnormal errors completely eliminates the probability of their occurrence. So, for abnormal errors of types 3, 6, 7, 10 and 12, the error probability when using the considered technical solutions is zero.

The obtained dependences give an idea of the effectiveness of various technical solutions and algorithms for reducing abnormal errors in determining the carrier frequency, which allows at the design and operation stages to decide the need to introduce specific measures to eliminate these errors.

Pages: 15-29
For citation

Podstrigaev A.S., Smolyakov A.V., Kalinin D.A. Abnormal errors of measuring carrier frequency of a signal in RF spectrum monitoring wideband receivers. Part 2. Quantifying the effectiveness of ways to reduce abnormal errors. Achievements of modern radioelectronics. 2023. V. 77. № 7. P. 15–29. DOI: https://doi.org/10.18127/j20700784-202307-02 [in Russian]

References
  1. Podstrigaev A.S., Smolyakov A.V., Kalinin D.A. Abnormal errors of measuring carrier frequency of a signal in RF spectrum monitoring wideband receivers. Part 1. Expressions for estimating the probabilities of abnormal errors. Achievements of modern radioelectronics. 2023. V. 77. № 5. P. 20–34. DOI: https://doi.org/10.18127/j20700784-202305-02. [in Russian]
  2. Podstrigaev A.S. Klassifikatsiya anomal'nykh oshibok izmereniya chastotno-vremennykh parametrov v shirokopolosnykh priemnikakh i sposoby ikh ustraneniya. Zhurnal Sibirskogo federal'nogo universiteta. Tekhnika i tekhnologii. 2022. 15(2). S. 223–237. [in Russian]
  3. Wiegand R.J. Radar Electronic Countermeasures System Design. Norwood: Artech House. 1991.
  4. Patent 2237907 RF, MPK7 G 01 S 7/38, H 04 K 3/00. Korabel'nyy kompleks radioelektronnogo protivodeystviya. Borisov A.A. i dr.; patentoobladatel' DGUP «NTTs «Brigantina». № 2002132544/09; zayavl. 03.12.2002; opubl. 10.10.2004. [in Russian]
  5. Patent 2284545 RF, MPK G 01 S 7/40, G 01 S 11/00. Korabel'naya sistema radiotekhnicheskogo kontrolya. Baylov V.S. i dr.; patentoobladatel' FGUP «TNIIS». № 2004119344/09; zayavl. 24.06.2004; opubl. 10.01.2006. [in Russian]
  6. Patent US 6448921. Channelized monobit electronic warfare radio receiver. Tsui J.B.Y., Hedge J.N., Chakravarthy V.D., Graves K.M. Applicant and patent holder The United States of America as Represented by the Secretary of the Air Force; declared 30.07.01; publ. 10.09.02.
  7. Podstrigaev A.S., Likhachev V.P. Neodnoznachnost' opredeleniya chastoty v matrichnom priemnike. Zhurnal radioelektroniki: elektronnyy zhurnal. 2015. № 2. [in Russian]
  8. Patent 2587645 RF, MPK G01R 23/00. Sposob opredeleniya chastoty v matrichnom priemnike i ustroystvo dlya ego osushchestvleniya. Podstrigaev A.S., Likhachev V.P.; zayavitel' i patentoobladatel' OAO «Bryanskiy elektromekhanicheskiy zavod». № 2015118979/28; zayavl. 20.05.2015; opubl. 20.06.2016, byul. № 17. [in Russian]
  9. Podstrigaev A.S. Shirokopolosnyy matrichno-parallel'nyy priemnik sredstv radiotekhnicheskoy razvedki s ponizhennoy neodnoznachnost'yu opredeleniya chastoty radiolokatsionnykh signalov: dis. kand. tekhn. nauk. 2016. [in Russian]
  10. Kolmakova I.V. Mikropoloskovye uzkopolosnye SVCh-fil'try s podavleniem parazitnykh polos: dis. ... kand. tekh. nauk. SPb.: SPbGETU. 2013. [in Russian]
  11. Fusko V. SVCh-tsepi. Analiz i avtomatizirovannoe proektirovanie. M.: Radio i svyaz'. 1990. [in Russian]
  12. Podstrigaev A.S. Proektirovanie SVCh-ustroystv: praktikum v 2 ch. Ch. 2. SPb: Izd-vo SPbGETU «LETI». 2019. [in Russian]
  13. East P.W. Fifty years of instantaneous frequency measurement. IET Radar, Sonar & Navigation. 2012. № 2. P. 112–122. [in Russian]
  14. Len'shin A.V. Bortovye sistemy i kompleksy radioelektronnogo podavleniya. Voronezh: Nauchnaya kniga. 2014. [in Russian]
  15. Tsui J.B.Y., Schamus J.J., Kaneshiro D.H. Monobit receiver. Proceedings of the IEEE MTT-S International Microwave Symposium. New York: IEEE. 1997. № 2. P. 469–471. [in Russian]
  16. Podstrigaev A.S. Povyshenie effektivnosti matrichnogo priemnika v slozhnoy signal'noy obstanovke na osnove optovolokonnoy linii zaderzhki. Trudy MAI. 2021. № 116. DOI: 10.34759/trd-2021-116-08. [in Russian]
  17. Patent 2761983 C2 RF, G01R 23/16, H04B 1/74. Sposob opredeleniya chastot mnozhestva signalov v priemnike s subdiskretizatsiey. Podstrigaev A.S., Smolyakov A.V., Shabanov M.F., Shpakov I.I.; zayavitel' i patentoobladatel' AO «NII «Vektor». – № 2021110815; zayavl. 16.04.2021; opubl. 14.12.2021, byul. № 35. [in Russian]
  18. Podstrigaev A.S., Smolyakov A.V. Issledovanie tochnosti opredeleniya chastotno-vremennykh parametrov impul'sa v tsifrovom priemnike s subdiskretizatsiey pri mnogosignal'nom vozdeystvii. Trudy MAI. 2022. № 123. DOI: 10.34759/trd-2022-123-21. [in Russian]
  19. Podstrigaev A.S. Vliyanie nelineynosti elementov SVCh trakta na vozniknovenie neodnoznachnosti opredeleniya chastoty v shirokopolosnom matrichnom priemnike. Sovremennye problemy proektirovaniya, proizvodstva i ekspluatatsii radiotekhnicheskikh sistem. 2016. № 1 (10). S. 147–150. [in Russian]
  20. AN0-39. Stepped Frequency Measurement Improve IM Testing. Mini-Circuits. 1999. URL: https://www.minicircuits.com/app/AN0-39.pdf. (data obrashcheniya: 27.12.2022 g.)
  21. HMC8412 Datasheet. URL: https://www.analog.com/media/en/technical-documentation/data-sheets/hmc8412chips.pdf. (data obrashcheniya: 27.12.2022 g.)
  22. Podstrigaev A.S. Klassifikatsiya neodnoznachnosti opredeleniya chastoty v tsifrovom priemnike s subdiskretizatsiey. Radiotekhnika i elektronika. 2022. T. 67. № 4. S. 369–376. DOI: 10.31857/S0033849422040131. [in Russian]
  23. Patent 2763583 C2 RF, H03M 1/12, H04J 1/00. Sposob opredeleniya chastoty v priemnike s subdiskretizatsiey. Aleshina E.A. i dr.; zayavitel' i patentoobladatel' AO «NII «Vektor». № 2021110489; zayavl. 14.04.2021; opubl. 30.12.2021, byul. № 1. [in Russian]
Date of receipt: 12.05.2023
Approved after review: 30.05.2023
Accepted for publication: 22.06.2023