350 rub
Journal Achievements of Modern Radioelectronics №5 for 2023 г.
Article in number:
Abnormal errors of measuring carrier frequency of a signal in RF spectrum monitoring wideband receivers. Part 1. Expressions for estimating the probabilities of abnormal errors
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700784-202305-02
UDC: 621.396.62
Authors:

A.S. Podstrigaev1, A.V. Smolyakov2, D.A. Kalinin3

1–3 Saint Petersburg Electrotechnical University «LETI» (Saint Petersburg, Russia)

Abstract:

Measuring various signal parameters, including carrier frequency, is one of the main functions of wideband receivers. One can divide errors in measuring signal parameters into two main groups – normal and abnormal. Standard errors appear due to different types of noise, such as thermal, phase, quantization and sampling noise. Thus, we can describe this type of error using expected value and standard deviation. Abnormal errors occur due to a combination of receiver features and signal parameters received at the current location in space. This type of error already has its classification and different ways to eliminate them. Although, quantitative evaluation of these algorithms and technical solutions has never been done.

Therefore, the work aims to derive analytic expressions for the probability of abnormal error occurrence in wideband receivers for each error type.

As a result of the conducted research, approaches to carrier frequency evaluation were considered, and causes of abnormal errors were described. Furthermore, for six common receiver types (multichannel, matrix, scanning, instantaneous frequency measurement, monobit and Sub‐Nyquist multichannel receivers) possibility of deriving an analytic expression was analyzed.

It is also shown that for errors of the 1st, 8th, 9th, and 11th types, generalization is impossible due to the significant number of individual cases that need to be dealt with separately. So, the distribution of interference signals in space by frequency and amplitude is unknown for the first error type. Similarly, the distribution of electromagnetic compatibility vulnerabilities in space by frequency and amplitude is unknown. For the 8th and 9th error types, the parameters of the pulses, the receiving path, and the processing algorithms are unknown. Additionally, for the 9th type, the frequency scanning algorithms can vary over a wide range. For the 11th error type, the probability of an abnormal error depends on the algorithm used for determining the frequency, frequency resolution, and, most of all, the input signal's parameters. The main ones are the number of signals, the mutual ratio of their frequencies and modulation parameters.

One can use obtained expressions for estimating the abnormal error probability in the main types of wideband receivers of RF spectrum monitoring tools at the design stage of these tools to assess the feasibility and effectiveness of applying technical solutions that reduce abnormal errors.

Pages: 20-34
For citation

Podstrigaev A.S., Smolyakov A.V., Kalinin D.A. Abnormal errors of measuring carrier frequency of a signal in RF spectrum monitoring wideband receivers. Part 1. Expressions for estimating the probabilities of abnormal errors. Achievements of modern radioelectronics. 2023. V. 77. № 5. P. 20–34. DOI: https://doi.org/10.18127/j20700784-202305-02 [in Russian]

References
  1. Perunov Ju.M., Macukevich V.V., Vasil'ev A.A. Zarubezhnye radiojelektronnye sredstva. Kn. 2: Sistemy radiojelektronnoj bor'by. M.: Radiotehnika. 2010. [in Russian]
  2. Len'shin A.V. Bortovye sistemy i kompleksy radiojelektronnogo podavlenija. Voronezh: Nauchnaja kniga. 2014. [in Russian]
  3. Tsui J.B.Y. Microwave receivers with electronic warfare applications. New York: SciTech Publishing Inc. 2005.
  4. Poisel R.A. Electronic warfare receivers and receiving systems. Artech House. 2015.
  5. Nikolaev A.N. Cifrovye tehnologii v shirokopolosnyh priemnikah SVCh radiosignalov. Vestnik JuUrGU. Ser. «Komp'juternye tehnologii, upravlenie, radiojelektronika». 2012. № 35 (294). S. 30–34. [in Russian]
  6. Tsui J., Cheng Chi-Hao Digital techniques for wideband receivers. 3rd ed. New York: SciTech Publishing Inc. 2015.
  7. Podstrigaev A.S. Metodika proektirovanija sverhshirokopolosnogo cifrovogo priemnika s subdiskretizaciej. T-Comm: Telekommunikacii i transport. 2021. T. 15. № 10. S. 11–17. DOI: 10.36724/2072-8735-2021-15-10-11-17. [in Russian]
  8. Smoljakov A.V., Podstrigaev A.S. Harakteristiki obnaruzhenija cifrovogo priemnika s subdiskretizaciej. Radiotehnika. 2021. T. 85. № 9. S. 95–107. DOI: 10.18127/j00338486-202109-09. [in Russian]
  9. Smoljakov A.V., Podstrigaev A.S. Jeksperimental'noe issledovanie kojefficienta shuma cifrovogo priemnika s subdiskretizaciej v polose do 18 GGc. Trudy MAI. 2022. № 122. DOI: 10.34759/trd-2022-122-13. [in Russian]
  10. Podstrigaev A.S., Smoljakov A.V. Issledovanie tochnosti opredelenija chastotno-vremennyh parametrov impul'sa v cifrovom priemnike s subdiskretizaciej pri mnogosignal'nom vozdejstvii. Trudy MAI. 2022. № 123. DOI: 10.34759/trd-2022-123-21. [in Russian]
  11. Kulikov E.I., Trifonov A.P. Ocenka parametrov signalov na fone pomeh. M.: Sov. radio. 1978. [in Russian]
  12. Fal'kovich S.E. Ocenka parametrov signalov. M.: Sov. radio. 1970. [in Russian]
  13. H'juber Dzh.P. Robastnost' v statistike: Per. s angl. M.: Mir. 1984. [in Russian]
  14. Kuprijanov A.I., Saharov A.V. Radiojelektronnye sistemy v informacionnom konflikte. M.: Vuzovskaya kniga. 2003. [in Russian]
  15. Kirsanov Je.A., Sirota A.A. Obrabotka informacii v prostranstvenno-raspredelennyh sistemah radiomonitoringa: statisticheskij i nejrosetevye podhody. M.: Fizmatlit. 2012. [in Russian]
  16. Podstrigaev A.S. Klassifikacija anomal'nyh oshibok izmerenija chastotno-vremennyh parametrov v shirokopolosnyh priemnikah i sposoby ih ustranenija. Zhurnal Sibirskogo federal'nogo universiteta. Tehnika i tehnologii. 2022. № 15(2). S. 223–237. [in Russian]
  17. Bokk G.O. Povyshenie jeffektivnosti raboty sistem svjazi na osnove prostranstvenno-vremennoj obrabotki i spektral'nogo analiza signalov: diss. … d.t.n. M. 2000. [in Russian]
  18. Trifonov P.A., Gushhin I.V., Popova T.V. Kvazipravdopodobnaja ocenka vremeni prihoda sverhshirokopolosnogo signala neizvestnoj formy pri nalichii anomal'nyh oshibok vsledstvie vozdejstvija uzkopolosnyh pomeh. Radiolokacija, navigacija, svjaz': XHI Mezhdunar. nauch.-tehnich. konf. Voronezh. 14–16 aprelja 2015 goda. Voronezh: NPF «SAKVOEE» OOO. 2015. S. 266–277. [in Russian]
  19. Ershov A.A. Stabil'nye metody ocenki parametrov (obzor). Avtomatizacija i telemehanika. 1978. № 8. S. 66–100. [in Russian]
  20. Perunov Ju.M., Dmitriev V.G., Kuprijanov A.I. Radiojelektronnaja bor'ba. Obnaruzhenie i identifikacija informacionnyh kanalov. M.: Faktorial. 2021. [in Russian]
  21. Radzievskij V.G., Sirota A.A. Informacionnoe obespechenie radiojelektronnyh sredstv v uslovijah konflikta. M.: IPRZhR. 2001. [in Russian]
  22. Borisov V.I. i dr. Pomehozashhishhennost' sistem radiosvjazi s rasshireniem spektra signalov metodom psevdosluchajnoj perestrojki rabochej chastoty. M.: Radio i svjaz'. 2000. [in Russian]
  23. Ventcel' E S., Ovcharov L.A. Teorija verojatnostej. M.: Nauka. 1969. [in Russian]
  24. Self A.G., Smith B.G. Intercept time and its prediction. IEE Proceedings F – Communications, Radar and Signal Processing 1985. V. 132. № 4. P. 215–220. DOI: 10.1049/ip-f-1.1985.0052.
  25. Podstrigaev A.S., Smoljakov A.V., Lihachev V.P. Vybor priemnika dlja shirokopolosnogo analiza signal'noj obstanovki na osnove ocenki ee slozhnosti. Radiotehnika. 2022. T. 86. № 1. S. 143−153. DOI: 10.18127/j00338486-202201-19. [in Russian]
  26. Vakin S.A., Shustov L.N. Osnovy radioprotivodejstvija i radiotehnicheskoj razvedki. M.: Sov. radio. 1968. [in Russian]
  27. Podstrigaev A.S. Klassifikacija neodnoznachnosti opredelenija chastoty v cifrovom priemnike s subdiskretizaciej. Radiotehnika i jelektronika. 2022. T. 67. № 4, S. 369–376. DOI: 10.31857/S0033849422040131. [in Russian]
  28. Tsui J.B.Y., Schamus J.J., Kaneshiro D.H. Monobit receiver. Proceedings of the IEEE MTT-S International Microwave Symposium. New York: IEEE.1997. № 2. P. 469–471.
Date of receipt: 27.03.2023
Approved after review: 13.04.2023
Accepted for publication: 28.04.2023