350 rub
Journal Achievements of Modern Radioelectronics №4 for 2023 г.
Article in number:
Methodology for estimating the error in predicting the position of space debris elements based on the results of tracking by a radar information tool
Type of article: scientific article
DOI: https://doi.org/10.18127/j15604128-202201-05
UDC: 623.618.5
Authors:

I.V. Chebotar1, R.A. Gudaev2, S.V. Kulikov3, M.S. Smirnov4, V.M. Lizan5

1 Military University of Radioelectronics (Cherepovets, Russia)
2−5 A.F. Mozhaysky Military Space Academy (Saint Petersburg, Russia)
1−5 cvviur6@mil.ru

Abstract:

Intensive space activity of mankind has led to the formation of a huge number of elements of space debris, which, in its uncontrolled movement, poses a great danger to operating spacecraft. To determine the position of space debris elements, radar information tools are used, which have proven to be a reliable and all-weather measuring instrument. At the present stage, a lot of work has been done to create algorithmic support for the detection and tracking of space debris elements in the area of operation of information tools, however, the issues of forecasting after leaving their areas of operation and determining coordinate determination errors based on the results of tracking have not yet been fully worked out.

This publication reflects the results of a study of the issues of determining the error in predicting the position of space debris elements in near-Earth space based on the results of statistical processing of tracking results by radar information means. The method for estimating the error in predicting the position of space debris elements based on the results of tracking by a radar information tool is considered. A block diagram of the method is proposed. It is shown that the error in predicting the position of space debris elements is determined on the basis of statistical processing of the results of solving differential equations, considering the features of the radar information tool. The features of the functioning of radar information tools when accompanied by elements of space debris are described. The equations and relationships underlying the proposed method are described. The presented method allows obtaining initial data for planning activities related to the control of near-Earth space.

Pages: 44-52
For citation

Chebotar I.V., Gudaev R.A., Kulikov S.V., Smirnov M.S., Lizan V.M. Methodology for estimating the error in predicting the position of space debris elements based on the results of tracking by a radar information tool. Electromagnetic waves and electronic systems. 2022. V. 27. № 1. P. 39−47. DOI: https://doi.org/10.18127/j15604128-202201-05 (in Russian)

References
  1. Leonov A.I., Vasenev V.N., Gaidukov Yu.I. Modelirovanie v radiolokatsii. M.: Sov. Radio. 1979. 264 s. (in Russian).
  2. Spravochnik po radiolokatsii. Pod red. M. Skolnika. Nyu-Iork. 1970. V 4-kh tomakh. Pod obshchei red. K.N. Trofimova. T. 1. Osnovy radiolokatsii. Pod red. Ya.S. Itskhoki. M.: Sov. Radio. 1976. 465 s. (in Russian).
  3. Teoreticheskie osnovy radiolokatsii. Pod red. V.E. Dulevicha. M.: Sov. Radio. 1964. 732 s. (in Russian).
  4. Savrasov Yu.S. Algoritmy i programmy v radiolokatsii M.: Radio i svyaz. 1985. 216 s. (in Russian).
  5. Kuzmin S.Z. Osnovy teorii tsifrovoi obrabotki radiolokatsionnoi informatsii. M.: Sov. radio. 1974. 432 s. (in Russian).
  6. Savrasov Yu.S. Algoritmy i programmy v radiolokatsii. M.: Radio i svyaz. 1985. 216 s. (in Russian).
  7. Kuzmin S.Z. Tsifrovaya obrabotka radiolokatsionnoi informatsii. M.: Sov. radio. 1967. 399 s. (in Russian).
  8. Farina A. Tsifrovaya obrabotka radiolokatsionnoi informatsii. Soprovozhdenie tselei: Per. s angl. M.: Radio i svyaz. 1993. 320 s. (in Russian).
  9. Kuzmin S.Z. Osnovy proektirovaniya sistem tsifrovoi obrabotki radiolokatsionnoi informatsii. M.: Radio i svyaz. 1986. 352 s. (in Russian).
  10. Leonov A.I., Leonov S.A., Nagulinko F.V. i dr. Ispytaniya RLS (otsenka kharakteristik). M.: Radio i svyaz. 1990. 208 s.
  11. RD 50-25645.325-89. Metodicheskie ukazaniya sputniki zemli iskusstvennye. Osnovnye sistemy koordinat dlya ballisticheskogo obespecheniya poletov i metodika rascheta zvezdnogo vremeni. M.: Izdatelstvo standartov. 1990. 19 s. (in Russian).
  12. Volkov S.I., Ovodenko V.B., Tumanov P.D., Borodavkin L.V., Bondarenko A.P., Mukhanov V.A. Podkhod k postroeniyu veroyatnostnoi modeli oshibok izmereniya koordinat tselei dlya RLS nablyudeniya za kosmicheskimi ob'ektami. Uspekhi sovremennoi radioelektroniki. 2016. № 9. 35−42 s. (in Russian).
  13. Obshchee opisanie sistemy s kodovym razdeleniem signalov. Redaktsiya 1.0. Interfeisnyi kontrolnyi dokument. M.: AO «Rossiiskie kosmicheskie sistemy». 2016. 133 s. (in Russian).
  14. Duboshin G.N. Nebesnaya mekhanika: Osnovnye zadachi i metody. M.: Nauka, 1975. 800 s. (in Russian).
  15. Abalakin V.K. Osnovy efemeridnoi astronomii. M.: Nauka, 1979. 448 s. (in Russian).
Date of receipt: 31.01.2022
Approved after review: 18.02.2022
Accepted for publication: 23.03.2022