350 rub
Journal Achievements of Modern Radioelectronics №4 for 2023 г.
Article in number:
Estimation of the parameters of the trajectory movement of an unmanned aerial vehicle with different configurations of navigation information sources
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700784-202304-04
UDC: 621.396.94
Authors:

V.V. Erokhin1, B.V. Lezhankin2, E.A. Bolelov3

1,2 Irkutsk branch of the Moscow State Technical University of Civil Aviation (IB MSTU CA)
3 Moscow State Technical University of Civil Aviation (MSTU CA)
 

Abstract:

In recent years, the problem of insufficient noise immunity and accuracy of the functioning of satellite radio navigation systems (SRNS), including for high-precision positioning of unmanned aerial vehicles (UAVs), has been manifested. The use of SRNS as the only means of UAV navigation is currently not acceptable, because the actual operating conditions of the UAV may be such that the SRNS will not ensure the fulfillment of the requirements for continuous and reliable receipt of coordinate-time information. In this regard, the actual goal of the research is to consider possible methods and means of providing high-precision navigation definitions when using SRNS and to evaluate the accuracy characteristics for various compositions and configurations of navigation information sources (NIS). The article proposes a way to improve the accuracy and continuity of UAV navigation definitions by introducing a triadic integrated navigation system (ISN). The results of the structural synthesis of the ISN are presented, taking into account the impact of random perturbations. It is proposed to perform integration of meters by implementing an algorithm for the appropriate processing of information in a specialized navigation processor. Based on the modified method of integration, an algorithm for joint processing of navigation information has been developed. The peculiarity of the proposed approach lies in the fact that the estimated parameters are the measurement errors of the state variables, on the basis of which the parameters of the trajectory motion are calculated. The results of modeling and research of the characteristics of the ISN for various compositions and configurations of the IIS are presented, and the dependence of the accuracy of maintaining a given UAV flight route on the errors in the estimates of navigation parameters is shown. The practical significance of the work lies in the fact that a method is proposed for improving the accuracy of navigation determinations based on the triadic ISN and characteristics for analyzing filtering errors and maintaining the flight path.

Pages: 35-49
For citation

Erokhin V.V., Lezhankin B.V., Bolelov E.A. Estimation of the parameters of the trajectory movement of an unmanned aerial vehicle with different configurations of navigation information sources. Achievements of modern radioelectronics. 2023. V. 77. № 4. P. 35–49. DOI: https://doi.org/10.18127/j20700784-202304-04 [in Russian]

References
  1. Karimov A.H. Celi i zadachi, reshaemye bespilotnymi aviacionnymi kompleksami novogo pokoleniya. Elektronnyj zhurnal «Trudy MAI». Vyp. 47. Aviacionnaya tekhnika i tekhnologiya. 2011. S. 5. [in Russian].
  2. Goncharenko V.I., Lebedev G.N., Mihajlin D.A. Zadacha operativnoj dvumernoj marshrutizacii gruppovogo poleta bespilotnyh letatel'nyh apparatov. Izvestiya RAN. Teoriya i sistemy upravleniya. 2019. № 1. S. 153–165 [in Russian].
  3. Huttunen M. Civil unmanned aircraft systems and security: The European approach. J Transp Secur 12. 2019. 83-101.
  4. Peshekhonov V.G. Vysokotochnaya navigaciya bez ispol'zovaniya informacii global'nyh navigacionnyh sputnikovyh sistem. Giroskopiya i navigaciya. 2022. T. 30. №1 (116). S. 3–11. DOI 10.17285/0869-7035.0084 [in Russian].
  5. Emel'yancev G.I., Stepanov A.P. Integrirovannye inercial'no-sputnikovye sistemy orientacii i navigacii. Pod obshch. red. V.G. Peshekhonova. SPb.: GNC RF AO «Koncern «CNII «Elektropribor». 2016. 394 s. [in Russian].
  6. Shestakov I.N., Kryzhanovskij G.A. Rasshirenie polya SRNS s pomoshch'yu nazemnyh stancij AZN-V. Nauchnyj vestnik MGTU GA. 2014. 210. S. 114–117 [in Russian].
  7. Merkulov V.I., Verba V.S., Il'chuk A.R. Avtomaticheskoe soprovozhdenie celej v RLS integrirovannyh aviacionnyh kompleksov. Teore­ticheskie osnovy. RLS v sostave integrirovannogo aviacionnogo kompleksa. T. 1. Monografiya v 3-h tomah. Pod red. V.S Verby. M.: Radiotekhnika. 2018. 320 s. [in Russian].
  8. Stepanov O.A., Litvinenko Yu.A., Vasil'ev V.A., Toropov A.B., Basin M.V. Algoritm polinomial'noj fil'tracii v zadachah obrabotki navigacionnoj informacii pri kvadratichnyh nelinejnostyah v uravneniyah dinamiki i izmerenij. Ch. 1. Opisanie i sopostavlenie s algoritmami Kalmanovskogo tipa. Giroskopiya i navigaciya. 2021. T. 29. №3 (114). S. 3–33. DOI 10.17285/0869-7035.0068 [in Russian].
  9. Bruce P. Gibbs A. Advanced Kalman filtering, least-squares and modeling: a practical handbook. John Wiley & Sons, Inc., publication. 2011. 605 p.
  10. GLONASS. Principy postroeniya i funkcionirovaniya. pod red. A.I. Perova, V.N. Harisova. 4-e izd., pererab. i dop. M.: Radiotekhnika. 2010. 800 s. [in Russian].
  11. Yarlykov M.S., Mironov M.A. Markovskaya teoriya ocenivaniya sluchajnyh processov. M.: Radio i svyaz'. 1993. 464 s. [in Russian].
  12. Shatilov A.Yu., Nagin I.A. Tesno svyazannyj algoritm kompleksirovaniya NAP SRNS i mnogocelevoj INS. Radiotekhnika. 2012. № 6. Vyp. 174. S. 118–125 [in Russian].
Date of receipt: 27.02.2023
Approved after review: 13.03.2023
Accepted for publication: 27.03.2023