350 rub
Journal Achievements of Modern Radioelectronics №3 for 2023 г.
Article in number:
Features of recombination radiation of thin quantum wire in the electric field
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700784-202303-04
UDC: 539.3; 538.9; 537.29
Authors:

A.M. Mandel1, V.B. Oshurko2, S.G. Veselko3, K.G. Solomakho4, A.A. Sharts5

1–5 Moscow State University of Technology «STANKIN» (Moscow, Russia)

Abstract:

The problem of calculating the probability of the process of recombination radiation and the spectrum of emitted photons in thin quantum filaments in a longitudinal electric field is solved in this work. It is known that the purest spectrum of recombination radiation is produced by quantum dots, since the motion of quasi-particles in them is limited in all three directions. Quantum wires have one classical degree of freedom. But the spectral and orientational properties of radiation after single-photon recombination in them have a number of significant advantages over quantum dots. It has been established that the spectrum of single-photon recombination in a thin quantum wire in a longitudinal electric field is purely monochromatic, despite the possibility of classical motion of quasi-particles. Moreover, the emitted photon can only move along the thread in one of two directions. It is shown (on the basis of the semiclassical approach) that quasi-particles in a wire in an electric field move with uniform acceleration. Scattering by phonons and impurity centers is strongly suppressed due to the energy gap in the transverse motion spectrum. The recombination process is localized at two points of the wire, where the dispersion relations for the emitted photon are satisfied. The photon frequency increases linearly with the field strength, and the recombination probability depends on it in a complex «oscillatory» way. This shows the theoretical possibility of creating highly efficient compact (without special focusing optics, etc.) monochromatic frequency-tunable emitters based on quantum wires.

Pages: 44-52
For citation

Mandel A.M., Oshurko V.B., Veselko S.G., Solomakho K.G., Sharts A.A. Features of recombination radiation of thin quantum wire in the electric field. Achievements of modern radioelectronics. 2023. V. 77. № 3. P. 44–52. https://doi.org/10.18127/j20700784-202303-04
[in Russian]

References
  1. Haverkort J.E.M., Carnett E.C. and Bakkers E.P.A.M. Fundamentals of the nanowire solar cell: Optimization of the open circuit volt-age. Appl. Phys. Rev. 5, 031106 (2018). https://doi.org/10.1063/1.5028049
  2. Coktas N.I., Wilson P., Ghukasyan A. and all. Nanowires for energy: A review. Appl. Phys. Rev. 5, 041305 (2018). https://doi.org/ 10.1063/1.5054842
  3. Chavez‐Pirson A., Ando H., Saito H. and Kanbe H. Quantum wire microcavity laser made from GaAs fractional layer superlattices. Appl. Phys. Lett. 64. 1994. P. 1759–1774. https://doi.org/10.1063/1.111799
  4. Tivari S. and Woodall J. Experimental comparison of strained quantum‐wire and quantum‐well laser characteristics. Appl. Phys. Lett. 64, 1994. P. 2211–2219. https://doi.org/10.1063/1.111676
  5. Pokatilov E.P., Fonoberov V.A., Balaban S.N. and Fomin V.M. Electron states in rectangular quantum well wires (single wires, finite and infinite lattices) //J. Phys.: Condens. Matter. 12. 2000. P. 9037–9052. 10.1088/0953-8984/12/42/309
  6. Arai S., Maruyama T. GaInAsP/InP quantum wire lasers. IEEE Journal of Selected Topics in Quantum Electronics, July 2009. DOI: 10.1109/JSTQE.2008.2010872
  7. Ansel'm A.I. Vvedenie v teoriyu poluprovodnikov. M.: Nauka. 1978. [in Russian]
  8. Kittel' CH. Kvantovaya teoriya tverdyh tel. M.: Nauka. 1967. [in Russian]
  9. Dogonkin E.B., Zegrya G.G., Polkovnikov A.S. Mikroskopicheskaya teoriya Ozhe – rekombinacii v kvantovyh nityah. ZHETF. 2000. 117 (2). S. 429–439. [in Russian]
  10. Suris R.A. Pogranichnye sostoyaniya v geteroperekhodah. FTP. 1986. 20 (11). S. 2008–2014. IP: 85.249.37.101. [in Russian]
  11. Mandel' A.M., Oshurko V.B., Solomaho G.I., Solomaho K.G. Ideal'nye kvantovye niti v magnitnom pole – energiya samoor-ganizacii, kriticheskie razmery i upravlyaemaya provodimost'. Radiotekhnika i elektronika. 2018. 63 (3). P. 268–276. DOI: 10.7868/S0033849418030087. [in Russian]
  12. Mandel' A.M., Oshurko V.B., Veselko S.G., Solomaho K.G., SHarc A.A. Perenormirovka effektivnoj massy i faktora Lande elektrona v kvantovyh nityah. Uspekhi sovremennoj radioelektroniki. 2019. № 8. S. 18–28. DOI: 10.18127/j20700784-201907-08. [in Russian]
  13. Mandel' A.M., Oshurko V.B., Pershin S.M., Veselko S.G., Karpova E.E., SHarc A.A., Aristarhov A.A. Ob effekte peresecheniya podzon razmernogo kvantovaniya v tonkih kvantovyh nityah. Kratkie soobshcheniya po fizike FIAN. 2020. № 10. S. 11–17. DOI: 10.3103/S1068335620100073. [in Russian]
  14. Mandel' A.M., Oshurko V.B., Karpova E.E. Mekhanizm perenormirovki faktora Lande i effektivnoj massy v malyh sfericheskih kvantovyh tochkah. Radiotekhnika i elektronika. 2019. 64 (10). S. 1010–1018. DOI: 10.1134/S0033849419100085. [in Russian]
  15. Landau L.D., Lifshic E.M. Kvantovaya mekhanika. Nerelyativistskaya teoriya. M.: Nauka. 1974. [in Russian]
  16. Mandel' A.M., Oshurko V.B., Solomaho G.I., Solomaho K.G., Veretin V.S. Primenenie kachestvennyh metodov dlya rascheta spektra ideal'nyh kvantovyh tochek //Uspekhi sovremennoj radioelektroniki. 2015. № 8. S. 18–27. [in Russian]
  17. Mandel A.I., Grigoryev S.N., Loskutov A.I., Oshurko V.S., Solomakho G.I. Cold Emission Model of Scanning Tunneling Microscopy. Journal of Computational and Theoretical Nanoscience. 2015. V. 12. N. 10. P. 3036–3043. DOI: http://dx.doi.org/10.1166/jctn.2015.4078
Date of receipt: 12.12.2022
Approved after review: 11.01.2023
Accepted for publication: 27.02.2023