350 rub
Journal Achievements of Modern Radioelectronics №3 for 2023 г.
Article in number:
Specify capacity increasing as a fundamental problem of communication theory. Strategy development in the post-Shannon era. Part 3. Retrospective review of methods for capacity estimating of frequency-selective communication channels in the presence of ISI and using PSK-n and APSK-N-signal
Type of article: overview article
DOI: https://doi.org/10.18127/j20700784-202303-02
UDC: 621.396.13
Authors:

I.М. Lerner1, R.R. Fayzullin2, D.V. Shushpanov3, V.I. Il’in4, I.V. Ryabov5, А.N. Khairullin6

1,2,6 Kazan National Research Technical University A.N. Tupolev – KAI (Kazan, Russia)

3 St. Petersburg State University of Telecommunications. prof. M.A. Bonch-Bruevich (St. Petersburg, Russia)

4 Kazan (Privolzhsky) Federal University (Kazan, Russia)

5 Volga State Technological University (Yoshkar-Ola, Russia)

 

Abstract:

The method development that provides an increase in the specific capacity is one of the central problems of radio engineering and communication theory. At presents, the key factor that limits its solution at present is ISI produced by the frequency selectivity of a real composite communication channel.

To overcome this factor, the following classes of radio engineering information transmission systems are used: 1st class, in which information is transmitted in parallel and is implemented using the technology of multiplexing with orthogonal frequency division of channels and / or with space-time coding; 2) in which the transmission is carried out in a sequential manner, and the receiving of signals is carried out under conditions of ISI, including at information transfer rates higher than the Nyquist rate.

Despite the fact that at present the first class of systems has found wide application in the field of high-speed information transmission, it has a number of significant drawbacks in relation to the second systems class. At the same time, a number of results of the practical use of first-class systems indicate that their specific capacity limitation is about 4 bit/Hz·s, which, taking into account the existing growth in the volume of transmitted information, becomes insufficient in the near future.

Retrospective analysis of methods for receiving and processing information in phase radio engineering systems for serial data transmitting in frequency selective communication channels with ISI, in order to develop approaches to increasing their specific capacity.

The results are presented for solving the second and third of the tasks set in the first article, related to the critical analysis of methods for capacity estimating in frequency-selective communication channels in the presence of ISI, in order to choose the best of them for determining the symbol duration of PSK-n- and APSK- N-signals for the implementation of the first form of such systems, as well as for evaluating the possibility of increasing their specific capacity due to the complex frequency response of the communication channel.

The practical significance lies in determining the best method for estimating the specific capacity, symbol duration and signal constellation, which allow you to dynamically control the operation of the communication system.

Pages: 24-33
References
  1. Lerner I.М., Fayzullin R.R., Khairullin А.N., Shushpanov D.V., Il’in V.I., Ryabov I.V. Specify capacity increasing as a fundamental problem of communication theory. Strategy development in the post-Shannon era. Part 1. Retrospective review of methods for receiving and processing signals in frequency-selective communication channels at data transfer rates faster than nyquist rate. Achievements of modern radioelectronics. 2023. V. 77. № 1. P. 37–50. DOI: https://doi.org/10.18127/j20700784-202301-02 [in Russian]
  2. Lerner I.М., Fayzullin R.R., Khairullin А.N., Shushpanov D.V., Il’in V.I., Ryabov I.V. Specify capacity increasing as a fundamental problem of communication theory. Strategy development in the post-Shannon era. Part 2. Retrospective review of methods for receiving and processing signals in frequency-selective communication channels in the presence of ISI. Achievements of modern radioelectronics. 2023. V. 77. № 2. P. 16–33. DOI: https://doi.org/10.18127/j20700784-202302-02 [in Russian]
  3. Lerner I.M. Metod otsenki propusknoy sposobnosti real'nykh kanalov svyazi s mnogopozitsionnymi fazomanipulirovannymi signalami pri nalichii mezhsimvol'nykh iskazheniy i ego primenenie. T-Comm: Telekommunikatsii i transport. 2017. T. 11. № 8. S. 52–58. [in Russian]
  4. Lerner I.M. Analiticheskaya otsenka propusknoy sposobnosti kanala svyazi s chastotnoy kharakteristikoy rezonansnogo fil'tra pri nalichii mezhsimvol'nykh iskazheniy i ispol'zovanii mnogopozitsionnogo fazomanipulirovannogo signala. T-Comm: Telekommunikatsii i transport. 2017. T. 11. № 9. S. 65–73. [in Russian]
  5. Lerner I.M., Chernyavskiy S.M. Otsenka propusknoy sposobnosti real'nykh kanalov svyazi s AFMn-N-signalami pri nalichii MSI. T-Comm: Telekommunikatsii i transport. 2018. T. 12. № 4. S. 48–55. [in Russian]
  6. Lerner I.M., Fayzullin R.R., Ryabov I.V. Vysokoproizvoditel'nyy algoritm otsenki propusknoy sposobnosti kanalov svyazi, funktsioniruyushchikh na baze teorii razreshayushchego vremeni. Radiotekhnika. 2022. T. 86. № 4. S. 91–109. DOI: https://doi.org/10.18127/j00338486-202204-13. [in Russian]
  7. Lerner I.M., Il'in G.I., Il'in A.G. K voprosu o tsiklostatsionarnosti AFMn-N-signalov, nablyudaemykh na vykhode kanala svyazi s mezhsimvol'nymi iskazheniyami. Vestnik KGTU im. A.N. Tupoleva. 2018. № 3. S. 107–117. [in Russian]
  8. Lerner I.M., Il'in G.I. Chislennyy metod otsenki potentsial'noy propusknoy sposobnosti pri ispol'zovanii FMn-n-signala v kanale svyazi s mezhsimvol'nymi iskazheniyami. Vestnik KGTU im. A.N. Tupoleva, 2018. № 4. S. 138–149. [in Russian]
  9. Il'in G.I., Pol'skiy Yu.E. Dinamicheskiy diapazon i tochnost' radiotekhnicheskikh i optoelektronnykh izmeritel'nykh sistem. Itogi nauki i tekhniki. Ser. Radiotekhnika. 1989. T. 39. S. 67–114. [in Russian]
  10. Hartley R.V.L. Transmission of Information. BSTJ. 1928. V. 7. № 3. P. 535–563.
  11. Shannon C.E. A Mathematical Theory of Communication. Bell System Technical J. 1948 V. 27. № 3. P. 379–423.
  12. Shannon C.E. A Mathematical Theory of Communication. Bell System Technical J. 1948. V. 27. № 4. P. 623–656.
  13. Shennon K. Raboty po teorii informatsii i kibernetike. M.: Izd-vo inostrannoy literatury. 1963. [in Russian]
  14. Gonorovskiy I.S. Radiotekhnicheskie tsepi i signaly. Ch. 1. M.: Sov. radio. 1967. [in Russian]
  15. Il'in G.I. Informatsionnye poteri pri prokhozhdenii signalov cherez sistemu s ogranichennoy polosoy propuskaniya. Vestnik KGTU im. A.N. Tupoleva. 1997. № 1. S. 83–85. [in Russian]
  16. Khinchin A.Ya. Ob osnovnykh teoremakh teorii informatsii. UMN. 1956. T. 11. № 1. S. 17–75. [in Russian]
  17. Dobrushin R.L. Obshchaya formulirovka osnovnoy teoremy Shennona v teorii informatsii. UMN. 1959. T. 14. № 6. S. 3–104. [in Russian]
  18. Feinstein A. On the coding theorem and its converse for finite-memory channels. Il Nuovo Cimento. 1959. V. 13. 560–575.
  19. Proakis J.G. Digital Communications. 4th ed. N.Y.: McGraw-Hill. 2001.
  20. Digital communication over fixed time-continuous channel with memory with special application to telephone channels: Tech. Rep. 430. Mit Res. Lab. Electron. Cambridge, MA. 1964.
  21. Ermolaev V.T., Flaksman A.G. Teoreticheskie osnovy obrabotki signalov v sistemakh mobil'noy radiosvyazi. Nizhniy Novgorod: Izd-vo NNGU im. N.I. Lobachevskogo. 2010. [in Russian]
  22. Sunde E.D. Theoretical Fundamentals of Pulse Transmission – I. The Bell System Technical Journal. 1954. May. P. 721–788.
  23. Sunde E.D. Theoretical Fundamentals of Pulse Transmission – II. The Bell System Technical Journal. 1954. July. P. 987–1010.
  24. Ovseevich I.A., Pinsker M.S. Otsenka propusknoy sposobnosti nekotorykh real'nykh kanalov svyazi. Radiotekhnika. 1958. T. 13. № 4. S. 15–25. [in Russian]
  25. Ovseevich I.A., Pinsker M.S. Otsenka propusknoy sposobnosti kanala svyazi, parametry kotorogo yavlyayutsya sluchaynoy funktsiey vremeni nekotorykh real'nykh kanalov svyazi. Radiotekhnika. 1957. T. 12. № 10. S. 40–46. [in Russian]
  26. Siforov V.I. Ob usloviyakh polucheniya vysokoy propusknoy sposobnosti kanalov svyazi so sluchaynymi izmenyaemymi parametrami. Elektrosvyaz'. 1958. № 1. S. 30–35. [in Russian]
  27. Klovskiy D.D. Peredacha diskretnykh soobshcheniy po radiokanalam. Izd. 2-e, pererab. i dop. M.: Radio i svyaz'. 1982. [in Russian]
  28. Fink L.M. Teoriya peredachi diskretnykh soobshcheniy. M.: Sov. radio. 1970. [in Russian]
  29. Tsybakov B.S. O propusknoy sposobnosti diskretnogo po vremeni gaussovskogo kanala s fil'trom. PPI. 1970. T. 6. V. 3. S. 78–82. [in Russian]
  30. Gallager R.G. Information Theory and Reliable Communication. New York, NY, USA: Wiley. 1968.
  31. Hirt W., Massey J.L. Capacity of Discrete-Time Gaussian Channel with Intersymbol Interference. IEEE Transactions on Information Theory. 1988. V. 34. № 3. P. 380–388.
  32. Xiang W., Pietrobon S.S. On the capacity and normalization of ISI channels. IEEE Trans. Inf. Theory. 2003. V. 49. № 9. P. 2263–2268.
  33. Barry J.R., Lee E.A., Messerschmitt D.G. Capacity Penalty Due to Ideal Zero-Forcing Decision-Feedback Equalization. IEEE Transactions on Information Theory. 1996. V. 42. № 4. P. 1062–1071.
  34. Shamai S., Ozarow L.H., Wyner A.D. Information rates for a discrete-time Gaussian channel with intersymbol interference and stationary inputs. IEEE Trans. Inf. Theory. 1991. V. 37. № 6. P. 1527–1539.
  35. Shamai S., Laroia R. The Intersymbol Interference Channel: Lower Bounds on Capacity and Channel Precoding Loss. IEEE Transactions on Information Theory. 1996. V. 42. № 5. P. 1388–1404.
  36. Arnold D., Loeliger H.-A. On the information rate of binary-input channels with memory. In Conference Record of. IEEE International Conference on Communications. (ICC 2001) (Helsinki, Finland. 11-14 June 2001). N.Y.: IEEE. V. 9. P. 2692–2695.
  37. Shamai S., Ozarow L.H., Wyner A.D. Information rates for a discrete-time Gaussian channel with intersymbol interference and stationary inputs. IEEE Trans. Inf. Theory. 1991. V. 37. № 6. P. 1527–1539.
  38. Shamai S., Laroia R. The Intersymbol Interference Channel: Lower Bounds on Capacity and Channel Precoding Loss. IEEE Transactions on Information Theory. 1996. V. 42. № 5. P. 1388–1404.
  39. Arnold D., Loeliger H.-A. On the information rate of binary-input channels with memory. In Conference Record of. IEEE International Conference on Communications. (ICC 2001) (Helsinki, Finland. - 11-14 June 2001). N.Y.: IEEE. 2001. V. 9. P. 2692–2695.
  40. Arnold D., Loeliger H.-A., Vontobel P.O., Kavˇcic´ A., Zeng W. Simulation-based computation of information rates for channels with memory. IEEE Trans. Inf. Theory. 2006. V. 52. № 8. P. 3498–3508.
  41. Pfister H.D., Soriaga J.B., Siegel P.H. On the achievable information rates of finite-state ISI channels. In Proc. IEEE GLOBECOM, (25-29 November 2001 – San Antonio, TX). N.Y. 2001. P. 2992–2996.
  42. Vontobel P.O., Kavˇcic´ A., Arnold D.M., Loeliger H.-A. A generalization of the Blahut-Arimoto algorithm to finite-state channels. IEEE Trans. Inf. Theory 2008. V. 54. № 5. P. 1887–1917.
  43. Yang S. The Capacity of Communication Channels with Memory. A thesis on Doctor of Philosophy in the subject of Engineering Sciences. Harvard University. 2004.
  44. Zolotarev I.D., Miller Ya.E. Perekhodnye protsessy v kolebatel'nykh sistemakh i tsepyakh. M.: Radiotekhnika. 2010. [in Russian]
  45. Rytov S.M. Vvedenie v statisticheskuyu radiofiziku. Chast' 1. Sluchaynye protsessy. M.: Nauka, Gl. red. fiz-mat. literatury. 1976. [in Russian]
  46. Gardner W.A., Napolitano A., Luigi P. Cyclostationarity: Half a century of research. Signal Processing. 2006. V. 86. № 4. P. 639–697.
  47. Proakis J.G. Miller J. An adaptive receiver for digital signaling through channels with intersymbol interference. IEEE Transactions on Information Theory. 1969. V. 15. № 4. P. 484–497.
  48. Proakis J.G. Digital Communications. 4th ed. N.Y.: McGraw-Hill. 2001.
  49. Mordvinov A.E. Issledovanie vozmozhnosti povysheniya chastotnoy effektivnosti liniy svyazi za schet ispol'zovaniya signalov s vzaimnoy interferentsiey simvolov: dis. … kand. tekhn. nauk: 05.12.04: data zashch. 12.10.08, data utv. 21.05.09. MEI(TU). [in Russian]
  50. Verdú S. Fifty Years of Shannon Theory. IEEE Trans. 1998. V.IT-44. № 6. P. 2057–2078.
  51. Lerner I.M. K voprosu optimizatsii amplitudno-chastotnykh kharakteristik kanalov svyazi s FMN-n-signalami, postroennykh na osnove teorii razreshayushchego vremeni. T-Comm: Telekommunikatsii i transport. 2019. T. 13. № 9. S. 36–49. [in Russian]
  52. Lerner I.M. O vliyanii formy amplitudno-chastotnoy kharakteristiki na propusknuyu sposobnost' kanala svyazi s pamyat'yu, ispol'zuyushchego printsipy teorii razreshayushchego vremeni, s AFMn-N-signalami. T-Comm: Telekommunikatsii i transport. 2019. T. 13. № 10. S. 45–59. [in Russian]
  53. Lerner I.M., Fayzullin R.R., Yaushev S.T. O povyshenii propusknoy sposobnosti besprovodnykh sistem svyazi s FMn-n-signalami v kanalakh svyazi s mezhsimvol'nymi iskazheniyami. Vestnik KGTU im. A.N. Tupoleva. 2019. № 3. S. 159–168. [in Russian]
  54. Lerner I.M. Otsenka propusknoy sposobnosti besprovodnykh sistem svyazi na osnove vybora optimal'noy kompleksnoy chastotnoy kharakteristiki kanala. Vestnik KGTU im. A.N. Tupoleva. 2019. № 4. S. 142–151. [in Russian]
  55. Lerner I.M., Il'in G.I. Ogranichenie propusknoy sposobnosti izbiratel'nymi sistemami pri vozdeystvii FMn-n-signala. Nelineynyy mir. 2017. T. 15. № 1. S. 8–12. [in Russian]
Date of receipt: 19.12.2022
Approved after review: 13.01.2023
Accepted for publication: 27.02.2023