350 rub
Journal Achievements of Modern Radioelectronics №12 for 2023 г.
Article in number:
Development of a disassembly reflector design based on composite materials
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700784-202312-06
UDC: 621.396.676
Authors:

A.V. Soldatov1, A.A. Ikonnikova2, R.G. Batrutdinov3

1,2 JSC «NPP «Radiosviaz» (Krasnoyarsk, Russia)

3 Intrum LLC (Krasnoyarsk, Russia)

2 sushininaa@bk.ru

Abstract:

The most complex element of the antenna system is the reflector, the quality of which directly determines the performance of the entire antenna. Modern ground-based antenna systems are subject to high demands in terms of precision anufacturing of the reflective surface of the reflector, as well as its weight with high rigidity and structural strength. The requirements for terrestrial antenna systems force resort to the use of the most modern designs, technologies and materials. The article is devoted to the issues of optimizing the design of the reflector, reducing its weight and searching for new design solutions while maintaining the strength characteristics of the collapsible reflector structure. During the work, the main shortcomings of the designs used were identified, and on the basis of this a reflector was developed. The reflector design consists of five structural elements. Each part is a layered structure consisting of two skins and filler. The main material for the manufacture of the reflector is composite materials consisting of reinforcing fibers and polymer matrices. This is due to the fact that composite materials have properties such as corrosion resistance, high strength and lightness, dimensional stability, minimal moisture absorption, the ability to select optimal ratios of the binder component and matrix, and select the optimal curing mode. The manufacture of each part of the reflector was based on the vacuum infusion method. This method allows polymerization of the product in one technological cycle. After receiving the finished structure, to confirm the specified characteristics, climatic tests and tests for exposure to equivalent wind loads were carried out. The reflector design has successfully passed the entire scope of tests, which confirms the correct choice of design solutions, material, and manufacturing technology.

As a result of the work carried out, a collapsible reflector design was developed and manufactured. The use of composite materials in the manufacture of the structure made it possible to reduce weight, while increasing the manufacturability of the product. Also, calculations and tests showed the promise of this design and the possibility of its implementation in other projects.

Pages: 42-49
For citation

Soldatov A.V., Ikonnikova A.A., Batrutdinov R.G. Development of a disassembly reflector design based on composite materials. Achievements of modern radioelectronics. 2023. V. 77. № 12. P. 42–49. DOI: https://doi.org/10.18127/j20700784-202312-06
[in Russian]

References
  1. Vlasov A.Yu., Pasechnik K.A, Obvertkin M.A. i dr. Tekhnologicheskie osobennosti izgotovleniya antennykh reflektorov iz polimernykh kompotsizionnykh materialov dlya nazemnykh sistem svyazi. Reshetnevskie chteniya: materialy KhKh Mezhdunar. nauch. konf.: v 2 ch. Sib. gos. aerokosmich. un-t. Krasnoyarsk, 2016. Ch. 1. S. 258–260. [in Russian]
  2. Vasil'ev V.V. Mekhanika konstruktsiy iz kompozitsionnykh materialov. M.: Mashinostroenie, 1988. S. 96–115. [in Russian]
  3. Bataev A.A., Bataev V.A. Kompozitsionnye materialy: stroenie, poluchenie, primenenie. Novosibirsk: NGTU. 2002. [in Russian]
  4. Dremukhin M.A., Nagovitsin V.N. Sposob izgotovleniya elementov reflektora iz polimernykh kompotsizionnykh materialov. Reshetnevskie chteniya: materialy KhKhIV Mezhdunar. nauch. konf.: v 2 ch. Sib. gos. aerokosmich. un-t. Krasnoyarsk, 2020. Ch. 1. S. 431–433. [in Russian]
  5. Patent 2611594 RF. B64G 1/10. Sposob izgotovleniya mnogosloynogo antennogo reflektora. Vlasov A.Yu., Pasechnik K.A. Zayavl. 22.09.2015. Opubl. 28.02.2017. Byul. № 7. [in Russian]
  6. Golovkin G.S., Dmitrienko V.P. Nauchnye osnovy proizvodstva izdeliy iz termoplastichnykh kompozitsionnykh materialov. M.: RUSAKI. 2005. S. 200–260. [in Russian]
  7. Chichurin V.E. Berdnikova N.A. Nagovitsin V.N. Danilov V.E. Danilov E.N. Reflektor zerkal'noy antenny kosmicheskogo apparata: konstruktsiya i tekhnologiya izgotovleniya. Aktual'nye voprosy proektirovaniya avtomaticheskikh kosmicheskikh apparatov dlya fundamental'nykh i prikladnykh nauchnykh issledovaniy. AO «NPO Lavochkina». V. 2. S. 293–299. [in Russian]
  8. Obvertkin I.V., Pasechnik K.A., Vlasov A.Yu. Razmernostabil'nye gibridnye kompozitsionnye materialy. Novye polimernye kompozitsionnye materialy. Mikitaevskie chteniya – materialy KhVII Mezhdunar. nauch.-praktich. konf. Nal'chik. 2021. S. 176. [in Russian]
  9. Chudnov I.V. Razrabotka antennykh reflektorov iz kompozitsionnykh materialov dlya kosmicheskikh apparatov. Vseross. nauch. konf. s mezhdunarodnym uchastiem. 2013. S. 174–176. [in Russian]
  10. Chichurin V.E., Nagovitsin V.N., Patraev E.V., Matsienko A.V., Mikhnev M.M., Lukina N.M. Sposob ustanovki zakladnogo elementa v trekhsloynyy sotovyy reflektor i metodika proverki kachestva vkleivaniya. Materialy XV Vseross. konf. «Novye tekhnologii». T. 2. M.: RAN. 2018. S. 11–21. [in Russian]
  11. Vlasov A.Yu., Pasechnik K.A., Obvertkin I.V. Tekhnologicheskie osobennosti izgotovleniya antennykh reflektorov iz polimernykh kompozitsionnykh materialov dlya nazemnykh sistem svyazi. Reshetnevskie chteniya: materialy KhKh Mezhdunar. nauch. konf.: v 2 ch. Sib. gos. aerokosmich. un-t. Krasnoyarsk. 2016. Ch. 1. S. 258–259. [in Russian]
Date of receipt: 06.11.2023
Approved after review: 17.11.2023
Accepted for publication: 30.11.2023