M.V. Rodin1
1 Bauman Moscow State Technical University (Moscow, Russia)
1 mvrodin@bmstu.ru
Radars are an effective means of information support in solving problems of monitoring the state of objects and events in the surrounding space. A critical component of the radar is the transmitter. The efficiency of the entire radar depends largely on the structure, characteristics and functionality of the transmitter. In this regard, many new-generation radars contain active electronically scanned arrays (AESA), mostly fully semiconductor.
There is a significant number of studies, the results of which link the achievement of high efficiency of advanced AESA radars, in particular, with the dynamic control of the radar signals power, and hence the receive-transmit modules output power. Different methods are used to adjust the receive-transmit modules output power. Among them, the most preferred is the power supply voltage control of the transmitter power amplifier. However, as noted in the article, this causes the complexity of the transmitter due to the introduction of controlled power supplies into its composition and, as a consequence, the need to ensure the required speed of adjustment of their output voltage.
The article provides basic information about the use of controlled power supplies as part of AESA radar transmitters. The well-known schemes of such power supplies, the principles of their functioning are presented and systematized, as well as the ways of their further development are analyzed, taking into account the increased requirements for the radar efficiency. Special attention is paid to ways to increase the speed of voltage control at the output of the power supply. It is shown that the most promising are controlled two-stage power supplies. In addition to the energy storage charger, they contain voltage regulators between the energy storage and the power amplifier.
The improvement of the power supplies considered in the article should go in the direction of finding technical solutions aimed at reducing output voltage ripples and increasing their energy efficiency. The industrial development of new power supplies characterized by high values of specific energy and weight-size parameters will make it possible to make a serious breakthrough in AESA technology.
The article is of an overview nature and is intended primarily for engineers developing radar transmitters with output power control.
- Bil R., Brandfass M., Pieter van Bezouwen J. Future Technological Challenges for High Performance Radars. 19th International Radar Symposium. 2018. P. 1–10.
- Lu J. Design Technology of Synthetic Aperture Radar. NY: Wiley-IEEE Press. 2019.
- Li L., Heymsfield G., McLinden M. et al. Spaceborne Atmospheric Radar Technology Development. IEEE Radar Conference. 2020. P. 1–4.
- Skolnik M. Radar Handbook. NY: The McGraw-Hill Companies. 2008.
- Kingsley N., Guerci J. Radar RF Circuit Design. Boston: Artech House. 2016.
- Brown A. Active Electronically Scanned Arrays: Fundamentals and Applications. NY: Wiley-IEEE Press. 2022.
- Shishlov A.V., Denisenko V.V., Levitan B.A., Topchiev S.A., Shitikov A.M. Aktivnye fazirovannye antennye reshetki – sostoyanie i tendentsii razvitiya. Zhurnal radioelektroniki. 2023. № 1. DOI: https://doi.org/10.30898/1684-1719.2023.1.5. [in Russian]
- Kushnerev N.A., Rodin M.V. Osobennosti proektirovaniya i tendentsii razvitiya sistem elektropitaniya AFAR bortovykh radiolokatorov. Informatsionno-izmeritel'nye i upravlyayushchie sistemy. 2019. № 6. S. 68–82. [in Russian]
- Tushnov P.A., Berdyev V.S., Topchiev S.A. Tekhnologiya upravleniya vykhodnoy moshchnost'yu priemoperedayushchikh moduley kak sredstvo optimizatsii energeticheskikh kharakteristik aktivnykh fazirovannykh antennykh reshetok. Radiotekhnika. 2021. T. 85. № 10. S. 30–41. DOI: https://doi.org/10.18127/j00338486-202110-04. [in Russian]
- Fowle E., Carey D., Vander Schuur R., Yost R. A Pulse Compression System Employing a Linear FM Gaussian Signal. Proceedings of the IEEE. 1963. V. 51. № 2. P. 304–312.
- Müürsepp I., Berdnikova J., Ruuben T., Madar U. Probe Signals with Nonrectangular Envelope. Electronics and Electrical Engineering. 2010. № 5 (101). P. 99–102.
- Godrich H., Petropulu A., Poor H. Power Allocation Strategies for Target Localization in Distributed Multiple-Radar Architectures. IEEE Transactions on Signal Processing. 2011. V. 59. № 7. P. 3226–3240.
- Jung-Hyo K., Younis M., Moreira A., Wiesbeck W. A Novel OFDM Chirp Waveform Scheme for Use of Multiple Transmitters in SAR. IEEE Geoscience and Remote Sensing Letters. 2013. V. 10. № 3. P. 568–572.
- Ayad S., Redadaa S. Gaussian Linear Frequency Modulation Signal SAR Processing. 14th Mediterranean Microwave Symposium. 2014. P. 1–4.
- Efremov V., Sedletsky R., Vovshin B., Vylegzhanin I. Electromagnetic Compatibility of the Meteo Radars. 16th International Radar Symposium. 2015. P. 1153–1158.
- Zai A., Pinto M., Coffey M., Popovic Z. Supply-Modulated Radar Transmitters with Amplitude-Modulated Pulses. IEEE Transactions on Microwave Theory and Techniques. 2015. V. 63. № 9. P. 2953–2964.
- Balster E., Hill K., Kordik A., Scarpino F. Chirp Pulse Envelope Evaluation for SAR Image Formation. IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference. 2017. P. 567–570.
- Maiellaro G., Alessi G., Bruno A. et al. A 24-GHz Transceiver with RF Power Envelope Digital Control for Automotive Radar ICs. Proceedings of the 12th European Microwave Integrated Circuits Conference. 2017. P. 45–48.
- Temiz M., Alsusa E., Baidas M. A Dual-Functional Massive MIMO OFDM Communication and Radar Transmitter Architecture. IEEE Transactions on Vehicular Technology. 2020. V. 69. № 12. P. 14974–14988.
- Raab F. GaN-FET Class-E Amplifier for 60-MHz Radar. 50th European Microwave Conference. 2020. P. 1099–1102.
- Carotenuto V., Aubry A., Izzo A. et al. Power Amplifier Distortions on Radar Signals for Spectral Coexistence. Signal Processing Symposium. 2021. P. 35–39.
- Omar S., Kteish Z., Fadel H. Towards an OFDM Radar Waveform for Detection of Far Located Targets with Relatively Low Radar Cross Sections. Digital Signal Processing. 2021. V. 114. P. 1–13.
- Barradas F., Nunes L., Cabral P., Goncalves C., Pedro J. Dynamic Supply Voltage Control for PA Output Power Correction Under Variable Loading Scenarios. IEEE Transactions on Microwave Theory and Techniques. 2021. V. 69. № 1. P. 745–755.
- Shao K., Wang C., Xiao H. Structure Design of a Array Power Supply for Phased-Array Radar. Mach. Electron. 2015. № 4. P. 18–22.
- Sushkova N.S. Postroenie sistemy elektropitaniya dlya sovremennykh i perspektivnykh mnogoelementnykh AFAR. Pribory i sistemy. Upravlenie, kontrol', diagnostika. 2015. № 4. S. 39–43. [in Russian]
- Negreba O. Nekotorye aspekty organizatsii sistem elektropitaniya AFAR. Chast' 1. Silovaya elektronika. 2018. № 5. S. 72–74.
- Ding K., Wu F., Li S., Li B., He Y., Zhang Y. Design and Research on a Power Distribution System for Airborne Radar. The Journal of Engineering. 2019. № 16. P. 1528–1531.
- Zhang Y., Xu S., Chen Z., Li X., Dong B., Luo Q., Li B., He Y. Realization of DC/DC High Power and Large Current Combined Power Supply for Airborne Radar. The Journal of Engineering. 2019. V. 2019. № 16. P. 1930–1933.
- Zaika P.N., Kostikov V.G. Osobennosti elektrosnabzheniya i elektropitaniya peredvizhnykh radiolokatsionnykh stantsiy. Elektricheskoe pitanie. 2020. № 1. S. 10–17. [in Russian]
- Wang Y., Bao X., Liu Y., Li L., Liu H. A Power Supply System for TR Modules of Active Phased Array Radar. Open Journal of Circuits and Systems. 2020. V. 9. № 2. P. 28–34.
- Xia J., Wang Y., Zhang X., Cheng T., Chen Z., Zhang Y. Engineering Application of a Large Airborne Radar Power Supply System with 100 kW. IEEE 9th International Power Electronics and Motion Control Conference. 2020. P. 2331–2335.
- Yao Y., Kulothungan G., Krishnamoorthy H., Das A., Soni H. GaN-Based Two-Stage Converter With High Power Density and Fast Response for Pulsed Load Applications. IEEE Transactions on Industrial Electronics. 2022. V. 69. № 10. P. 10035–10044.
- Kumar M., Rayees K., Singh B., Chippalkatti V. Design and Implementation of High Power Pulsed Output DC–DC Converter. Smart Small Satellites: Design, Modelling and Development. Lecture Notes in Electrical Engineering. 2023. V. 963. P. 85–97.
- Rodin M.V. Modulyatsionnye istochniki elektropitaniya dlya radioperedatchikov telekommunikatsionnykh sistem. Prakticheskaya silovaya elektronika. 2022. № 4 (8). S. 2–18. [in Russian]
- Raab F., Poppe M. Kahn–Technique Transmitter for L–Band Communication/Radar. IEEE Radio and Wireless Symposium. 2010. P. 100–103.
- Wolff N., Heinrich W., Bengtsson O. Class–G Supply Modulation for MIMO and Radar with Phased Array Antennas. 12th German Microwave Conference. 2019. P. 131–134.
- Wong K., Ricciardi G. Characterization of Amplitude Modulation Bias Coupling for Solid–State High–Power Amplifiers. IEEE International Symposium on Phased Array Systems and Technology. 2013. P. 64–68.
- Eustice D., Baylis C., Cohen L., Marks R. Effects of Power Amplifier Nonlinearities on the Radar Ambiguity Function. IEEE Radar Conference. 2015. P. 1725–1729.
- Aubry A., Maio A., Carotenuto V., Farina A. Radar Phase Noise Modeling and Effects – part I: MTI filters. IEEE Transactions on Aerospace and Electronic Systems. 2016. V. 52. № 2. P. 698–711.
- Tua C., Pratt T., Zaghloul A. A Study of Interpulse Instability in Gallium Nitride Power Amplifiers in Multifunction Radars. IEEE Transactions on Microwave Theory and Techniques. 2016. V. 64. № 11. P. 3732–3747.
- Barradas F., Cunha T., Tome P., Pedro J. Compensation of Power Amplifier Long–Term Memory Behavior for Pulsed Radar Applications. IEEE Transactions on Microwave Theory and Techniques. 2019. V. 67. № 12. P. 5249–5256.
- Bent G., Hek P., Geurts S., Telli A., Brouzes H., Besselink M., Vlient F. A 10 Watt S–band MMIC Power Amplifier With Integrated 100 MHz Switch–Mode Power Supply and Control Circuitry for Active Electronically Scanned Arrays. IEEE Journal of Solid–state Circuits. 2013. V. 48. № 10. P. 2285–2295.
- McGee B., Nelms R. Powering Solid State Radar T/R Module Arrays from a Fuel Cell Using an Isolated Cúk Converter. 19 Annual IEEE Applied Power Electronics Conference and Exposition. 2004. P. 1853–1857.
- Kushnerev N.A. Ustroystvo elektropitaniya impul'snogo tverdotel'nogo peredatchika s vysokimi udel'nymi pokazatelyami. Radiotekhnika. 2009. № 5. S. 75–78. [in Russian]
- Korolev A.V., Kushnerev N.A., Kostyuchik D.A., Rodin M.V. Opyt razrabotki moshchnogo peredayushchego modulya AFAR P–diapazona s dinamicheskim upravleniem napryazheniem pitaniya dlya BRLS. Uspekhi sovremennoy radioelektroniki. 2015. № 5. S. 43–49. [in Russian]
- Huang X., Ruan X., Du F., Liu F., Zhang L. A Pulsed Power Supply Adopting Active Capacitor Converter for Low–Voltage and Low–Frequency Pulsed Loads. IEEE Transactions on Power Electronics. 2018. V. 33. № 11. P. 9219–9230.
- Yao Y., Krishnamoorthy H., Yerra S. Linear Assisted DC/DC Converter for Pulsed Mode Power Applications. IEEE International Conference on Power Electronics, Smart Grid and Renewable Energy. 2020. P. 1–5.
- Strelkov V., Darenkov A., Sosnina E., Shalukho A., Lipuzhin I. Quasi Resonant Converter for Autonomous Power Supply. Journal of Power Electronics. 2021. V. 21. P. 517–528.
- Dmitrikov V., Rozanov A., Petrochenko A. Osobennosti proektirovaniya otritsatel'noy obratnoy svyazi i silovogo sglazhivayushchego fil'tra DC/DC preobrazovatelya s impul'snymi nagruzkami dlya priemoperedayushchikh moduley aktivnykh fazirovannykh antennykh reshetok RLS. Fizika volnovykh protsessov i radiotekhnicheskie sistemy. 2021. T. 24. № 1. C. 78–88. DOI: https://doi.org/10.18469/1810–3189.2021.24.1.78–88. [in Russian]
- Gao X., Wu H., Gao S., Zhang Z., Xing Y. A Two–Stage Pulsed Power Supply for Low–DC–Voltage and Low–Frequency Pulsed–Current Loads. IEEE Transactions on Power Electronics. 2021. V. 36. № 2. P. 2298–2309.
- Opre V. Induktivnyy zaryad emkostnykh nakopiteley. Silovaya elektronika. 2008. № 4. S. 42–46. [in Russian]
- Kastrov M.Yu., Solov'ev I.N. Regulirovanie vykhodnogo napryazheniya preobrazovateley postoyannogo napryazheniya tsifrovymi metodami. Prakticheskaya silovaya elektronika. 2009. № 1(33). C. 31–36. [in Russian]
- Polyakov V. Kvazirezonansnye preobrazovateli s dozirovannoy peredachey energii dlya zaryada emkostnykh nakopiteley. Silovaya elektronika. 2015. № 1. S. 52–56. [in Russian]
- Ao W., Chen J. Model Predictive Control of Four–Switch Buck–Boost Converter for Pulse Power Loads. IEEE International Conference on Predictive Control of Electrical Drives and Power Electronics. 2021. P. 904–908.
- Korolev A.V., Kushnerev N.A., Rodin M.V., Bobkov E.A. Impul'snyy modulyator s dinamicheskim upravleniem formoy vykhodnogo napryazheniya dlya radiolokatsionnogo peredayushchego ustroystva. Prakticheskaya silovaya elektronika. 2017. № 4. S. 27–33. [in Russian]
- Jain A., McIntosh D., Jones M., Ratliff B. A 2.5kV to 22V, 1kW Radar Decoy Power Supply Using Silicon Carbide Semiconductor Devices. Proceedings of the 14th European Conference on Power Electronics and Applications. 2011. P. 1–10.
- Roberg M., Rodriguez M., Popovic Z., Pack R., Fernandez P., Alarcon E., Maksimovic D. Resonant Pulse–Shaping Power Supply for Radar Transmitters. IEEE Transactions of Power Electronics. 2014. V. 29. № 2. P. 707–718.
- Florian C., Capello T., Popovic Z., Niessen D., Paganelli R., Schafer S. Efficient Programmable Pulse Shaping for X–band GaN MMIC Radar Power Amplifiers. IEEE Transactions on Microwave Theory and Techniques. 2017. V. 65. № 3. P. 881–891.
- Kushnerev N.A., Rodin M.V. Impul'snyy regulyator napryazheniya dlya okonechnogo usilitelya moshchnosti peredayushchego modulya aktivnoy fazirovannoy antennoy reshetki. Prakticheskaya silovaya elektronika. 2021. № 1 (81). S. 37–42. [in Russian]