350 rub
Journal Achievements of Modern Radioelectronics №10 for 2023 г.
Article in number:
Processing of ultra-wideband signals in subsurface sensing radar
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700784-202310-06
UDC: 621.396.96
Authors:

M.D. Monakhov1, I.V. Kamenskiy2, K.Yu. Gavrilov3

1–3 Moscow Aviation Institute (National Research University) (Moscow, Russia)

1 maksimusmaks1998@gmail.com, 2 kamenskijiv@mai.ru, 3 gvrk61@mail.ru

Abstract:

The problem of optimal processing of an ultra-wideband signal with step frequency modulation (SFM) for radar sensing of a dispersed medium characterized by the dependence of the attenuation coefficient on frequency is considered. When using the condition of maximizing the value of the signal-to-noise ratio (SNR) as an optimality criterion, an optimal signal processing algorithm based on the maximum likelihood ratio method is obtained.

When probing dense media such as concrete or brick wall, the values of the attenuation coefficient can vary within a few tens of dB per meter with a bandwidth of the SFM-signal of 2...6 GHz. Under these conditions, the optimal processing of the SFM-signal is reduced to the operation of fast Fourier transform (FFT) with the weight summation of discrete samples using an asymmetric window. In this case, the type of the weight window function depends on the dispersed properties of the medium and is selected based on a priori information about the medium. In this paper, the use of the Rayleigh function with the possibility of adjusting the width of the window and the magnitude of the displacement of its maximum relative to the center is proposed for the formation of an asymmetric weight window.

The results of computer simulation are presented, which showed that when the attenuation coefficient changes within 30 dB/m (a concrete wall with low humidity), the proposed algorithm provides an average gain in the value SNR of about 7 dB in comparison with the signal processing algorithm with a symmetrical Hamming window. At the same time, there is a deterioration in the range resolution by 1,1...2 times, the value of which can be adjusted using the Rayleigh window parameter.

The results of field experiments in probing concrete and brick environments are also presented, confirming the validity of theoretical conclusions and the results of computer modeling. Field experiments were carried out using a radar layout using a SFM-signal with a bandwidth of 5,1 GHz and an initial frequency of 900 MHz.

Pages: 57-69
For citation

Monakhov M.D., Kamenskiy I.V., Gavrilov K.Yu. Processing of ultra-wideband signals in subsurface sensing radar. Achievements of modern radioelectronics. 2023. V. 77. № 10. P. 57–69. DOI: https://doi.org/10.18127/j20700784-202310-06 [in Russian]

References
  1. Chapurskiy V.V. Izbrannye zadachi teorii sverkhshirokopolosnykh radiolokatsionnykh sistem. Izd. 3-e, ispr. M.: MGTU im. N.E. Baumana. 2017. [in Russian]
  2. Through-the-Wall Radar Imaging. Edited by Moeness G. Amin. CRC Press. Boca Raton, London. New York. 2011.
  3. Gavrilov K.Yu., Igonina Yu.V., Linnikov O.N., Panyavina N.S. Otsenka razreshayushchey sposobnosti pri ispol'zovanii signalov so stupenchatoy chastotnoy modulyatsiey. Informatsionno-izmeritel'nye i upravlyayushchie sistemy. 2015. T. 13. № 5. S. 23–32. [in Russian]
  4. Gavrilov K.Yu., Kozlov R.Yu. Metod obrabotki radiolokatsionnykh signalov s chastotnoy manipulyatsiey pri obnaruzhenii lyudey v pomeshcheniyakh cherez stenu. Radiotekhnika. 2022. T. 86. № 4. S. 117–131. DOI: https://doi.org/10.18127/j00338486-202204-15. [in Russian]
  5. Gavrilov K.Yu., Igonina Yu.V., Linnikov O.N. Otsenka oshibok izmereniya koordinat tseley v radarakh zondirovaniya cherez stenu. Informatsionno-izmeritel'nye i upravlyayushchie sistemy. 2019. T. 17. № 1. S. 46–54. DOI: 10.18127/j20700814-201901-04. [in Russian]
  6. Sosulin Yu.G. Teoreticheskie osnovy radiolokatsii i radionavigatsii: Ucheb. posobie dlya vuzov. M.: Radio i svyaz'. 1992. [in Russian]
  7. Vaynshteyn L.A., Zubakov V.D. Vydelenie signalov na fone sluchaynykh pomekh. M.: Sov. radio. 1960. [in Russian]
  8. Modelirovanie i obrabotka radiolokatsionnykh signalov v Matlab: Ucheb. Posobie. Pod red. K.Yu. Gavrilova. M.: Radiotekhnika. 2020. [in Russian]
  9. Ryzhov A.I., Lazarev V.A., Mokhseni T.I. i dr. Oslablenie sverkhshirokopolosnykh khaoticheskikh signalov diapazona 3-5 GGts pri prokhozhdenii cherez steny zdaniy. Zhurnal radioelektroniki. 2012. № 5. [in Russian]
  10. Gavrilov K.Yu., Linnikov O.N., Soldatov A.L. Metod obrabotki radiolokatsionnykh signalov v zadachakh obnaruzheniya i izmereniya priznakov zhivykh lyudey. Informatsionno-izmeritel'nye i upravlyayushchie sistemy. 2018. T. 16. № 4. S. 3–15. [in Russian]
  11. Gavrilov K.Yu., Igonina Yu.V., Linnikov O.N. Analiz informativnosti priznakov pri vtorichnoy obrabotke signalov v RLS maloy dal'nosti. Informatsionno-izmeritel'nye i upravlyayushchie sistemy. 2018. T. 16. № 5. S. 11–17. [in Russian]
  12. Gavrilov K.Yu., Kolotov D.V. Metod kompensatsii interferentsionnykh pomekh v MIMO RLS maloy dal'nosti. Informatsionno-izmeritel'nye i upravlyayushchie sistemy. 2016. T. 14. № 7. S. 44–52. [in Russian]
  13. Gavrilov K.Yu., Kolotov D.V. Kompensatsiya interferentsionnykh pomekh v summarno-dal'nomernoy RLS maloy dal'nosti. Informatsionno-izmeritel'nye i upravlyayushchie sistemy. 2018. T. 16. № 7. S. 3–11. [in Russian]
Date of receipt: 30.08.2023
Approved after review: 15.09.2023
Accepted for publication: 29.09.2023