A.S. Pshenichkin1, A.E. Krupskaya2, K.N. Klimov3
1,2 PJSC «ALMAZ R&P Corp.», LEMZ (Moscow, Russia)
3 Moscow Aviation Institute (National Research University) (Moscow, Russia)
1 apshenichkin@lemz.ru, 2 krupskaya24@mail.ru, 3 const0@mail.ru
The transmitting device is an integral part of devices and systems, one way or another using information to distances. Their main task is to ensure the required level of power to the antenna. Moreover, one of the criteria for the quality of the transmitting device is the efficiency, and the design of the transmitting device with the highest possible power at the output without increasing energy consumption remains a very urgent task in the development of modern radio engineering transmitting systems. One of the ways to increase the efficiency of transmitting devices, regarding the increase in the efficiency of the summation and, as a result, the output power of the transmitting device, is the correction of the phase of the amplification channels in the operating frequency range due to the compensation of the existing difference in the electrical lengths of the elements of the distribution-dumping tract and solid-state amplifier models.
A scheme of a multichannel transmitting device with a phase correction system is proposed that compensates for the existing phase differences in the elements of the output amplification stage. A transmitting device with a phase correction system was also considered, consisting of a signal shaper, powerful amplifying modules, a distribution summing system (includes a divider, an adder and connecting feeders), a directional coupler, a control and monitoring device with an integrated ADC, an amplitude detector and an automatic monitoring and control system.
The proposed amplification channel phase correction system compensates the existing difference in the electrical lengths of the elements of the divider-adder path and amplifying modules in accordance with the algorithm, by means of controlled phase shifters (integrated into each amplifying module). The change in the phases of the microwave signal in (n-1) amplification channels is performed based on the calculated phase corrections obtained on the basis of successive estimates of the total output power of the reference amplifying module with each of the (n-1) modules, where n is the total number of amplifying modules (channels amplification) in the transmitter. The output power is estimated by the ADC according to the level of the microwave power envelope at the lower, middle and upper frequencies of the operating range, taken from the adder output by a directional coupler. The performance of the phase correction algorithm is ensured by the control device of the amplifying module, the control and monitoring device of the transmitting device, the automatic monitoring and control system from the processing and indication system, as well as the appropriate interface at the operator's workplace.
The proposed algorithm corrects the phases of the amplification channels according to the values obtained by the calculation method based on the data measured in the process of phase correction, which made it possible to reduce the maximum required number of phase shifter adjustments to 3 for each of n and each frequency, thereby ensuring a threefold increase in device performance.
It was experimentally confirmed that the application of the proposed technical solution increases the efficiency of power summation of the considered transmitter from 70% to 94% – 99% (excluding active losses in the divider-adder and RMSD of the output powers of the amplifying modules) and an increase in the output power of the transmitter by 30% was achieved.
The obtained results can be used to improve the algorithmic-software support of developed or modernized transmitting devices of radar stations.
Pshenichkin A.S., Krupskaya A.E., Klimov K.N. Study of a solid-state transmitting device with a phase correction system, which increases the summing efficiency. Achievements of modern radioelectronics. 2023. V. 77. № 10. P. 5–18. DOI: https://doi.org/10.18127/ j20700784-202310-01 [in Russian]
- Sechi F., Budzhatti M. Moshchnye tverdotel'nye SVCh-usiliteli. Per. s angl. V.O. Sultanova. Pod red. A.A. Borisova. M.: Tekhnosfera. 2015. [in Russian]
- Glybin A.A. Tverdotel'nye peredatchiki S- i Kh-diapazonov s vysokoy stabil'nost'yu chastoty i fazy signalov na GaN SVCh tranzistorakh. 2012. [in Russian]
- Bakulev P.A. Radiolokatsionnye sistemy. Uchebnik dlya vuzov. Izd. 3-e, pererab. i dop. M.: Radiotekhnika. 2015. [in Russian]
- Apin M.V., Kudryashov G.V., Khvalin A.L. Optimizatsiya kharakteristik usilitelya moshchnosti na otechestvennykh bipolyarnykh tranzistorakh v diapazone ot 1 do 2 GGts. Radiotekhnika. 2018. № 8. S.84–88. [in Russian]
- Shukhov I., Emel'yanov B., Evstigneev D., Smirnov A. Moshchnye SVCh tranzistornye sborki AO «NPP «Pul'sar» na baze Ga-N-kristallov AO «Svetlana-Rost». SVCh-elektronika. 2022. № 3. S.60–61. [in Russian]
- Bhattacharya P., Fornari R., Kamimura H. Comprehensive Semiconductor Science and Technology. Elsivier. 2015.
- Yue H., Yang L., Ma X., Ma J., Cao M., Pan C., Wang C., Zhang J. High-Performance Microwave Gate-Recessed AlGaN/AlN/GaN MOS-HEMT With 73% Power-Added Efficiency. IEEE Electron Device Letters. May 2011. V. 32. № 5. P. 626–628.
- Wong M.H., Pei Y., Brown D.F., Keller S., Speck J.S., Mishra U.K. High-performance N-face GaN microwave MIS-HEMT with >70% power-added efficiency. IEEE Electron Device Lett. Aug. 2009. V. 30. №. 8. P. 802–804.
- Chu R.M., Chen Z., Pei Y., Newman S., DenBaars S.P., Mishra U.K. MOCVD-grown AlGaN buffer GaN HEMTs with V-gates for microwave power applications. IEEE Electron Device Lett. Sep. 2009. V. 30. № 9. P. 910–912.
- Alybin. V.G, Semochkin A.S. Bortovye tverdotel'nye SVCh-usiliteli moshchnosti budushchego dlya komandno-izmeritel'nykh rabot. Raketno-kosmicheskoe priborostroenie i informatsionnye sistemy. 2016. T. 3. № 3. S. 89–97. [in Russian]
- Kishchinskiy A.A. Sverkhshirokopolosnye tverdotel'nye usiliteli moshchnosti SVCh diapazona: skhemotekhnika, konstruktsii, tekhnologii. Elektronika i mikroelektronika SVCh. 2018. S. 4–13. [in Russian]
- Emel'yanov B.V. Metody snizheniya amplitudno-fazovoy nestabil'nosti moshchnykh tverdotel'nykh shirokopolosnykh SVCh usilitel'nykh kaskadov v nelineynom rezhime. 2022. [in Russian]
- Kirillov I.N., Frolov V.V., Karyaeva V.Yu. Tverdotel'nye peredayushchee ustroystvo RLS UHF-diapazona, postroennoe na usilitelyakh moshchnosti SVCh. Radiotekhnicheskie i telekommunikatsionnye sistemy. 2015. № 3. S. 34–39. [in Russian]
- Pshenichkin A.S., Suchkov A.V. Raspredelitel'no-summiruyushchie sistemy tverdotel'nykh peredayushchikh ustroystv sovremennykh RLS. T-Comm: Telekommunikatsii i transport. 2020. T. 14. № 12. S. 33–44. [in Russian]
- Patent Rossii №2688948. Delitel' moshchnosti. Govorukhin V.I., Unru N.E. 2019. Byul. № 15. [in Russian]
- Patent Rossii №63139. Usilitel' vysokoy chastoty s kaskadnym summirovaniem moshchnostey. Tikhomirov S.G. 2007. Byul. № 13. [in Russian]
- Minnebaev V.M., Red'ka A.V., Ushakov A.V., Ushakov M.A., Tsarev A.V. Volnovodnyy summator SVCh moshchnosti Kh-diapazona chastot. Elektronnaya tekhnika. Ser. 2. Poluprovodnikovye pribory. 2018. V. 3 (250). S. 63–68. [in Russian]
- Lyubchenko V.E., Kalinin V.I., Kotov V.D., Radchenko D.E., Telegin S.A., Yunevich E.O. Summirovanie moshchnostey mikropoloskovykh antenn-generatorov v rezonatore, vstroennom v dielektricheskuyu podlozhku. Zhurnal Radioelektroniki. 2017. № 4. [in Russian]
- Kokolov A.A., Babak L.I. Skhemy slozheniya moshchnosti dlya monolitnykh integral'nykh SVCh-usiliteley. Doklady TUSURa. Ch. 2. 2011. № 2 (24). [in Russian]
- Kukharkin E.S., Sestroretskiy B.V. Elektricheskaya prochnost' volnovodnykh ustroystv. M.: Vysshaya shkola. 1963. [in Russian]
- Shakhgil'dyan V.V. i dr. Radioperedayushchie ustroystva. Pod red. V.V. Shakhgil'dyana. Izd. 3-e, pererab. i dop. M.: Radio i svyaz'. 2003. [in Russian]
- Koganov V.I. Tranzistornye radioperedatchiki. M.: Energiya. 1970. [in Russian]
- Patent Rossii №196826. Ustroystvo korrektsii elektricheskikh dlin kanalov usileniya. Pshenichkin A.S., Dronov S.V. 2020. Byul. № 8. [in Russian]
- Keysight Technologies. FieldFox Handheld Analyzers 4/6.5/9/14/18/26.5/32/44/50 GHz – Data Sheet.
- Kireev S.V., Vel'misov P.A. Grafiki v Mathcad: uchebno-metod. posobie. Ul'yanovsk: UlGTU. 2018. [in Russian]
- Keysight. N1911F/N1912A P-Series Power Meters and N1921A/N1922A Wideband Power Sensors – Data Sheet.