350 rub
Journal Achievements of Modern Radioelectronics №1 for 2023 г.
Article in number:
Specify capacity increasing as a fundamental problem of communication theory. Strategy development in the post-Shannon era. Part 1. Retrospective review of methods for receiving and processing signals in frequency-selective communication channels at data transfer rates faster than nyquist rate
Type of article: overview article
DOI: https://doi.org/10.18127/j20700784-202301-02
UDC: 621.396.13
Authors:

I.М. Lerner1, R.R. Fayzullin2, А.N. Khairullin3, D.V. Shushpanov4, V.I. Il’in5, I.V. Ryabov6

1–3 Kazan National Research Technical University A.N. Tupolev – KAI (Kazan, Russia)

4 St. Petersburg State University of Telecommunications. prof. M.A. Bonch-Bruevich (St. Petersburg, Russia)

5 Kazan (Privolzhsky) Federal University (Kazan, Russia)

6 Volga State Technological University (Yoshkar-Ola, Russia)

Abstract:

The method development that provides an increase in the specific capacity is one of the central problems of radio engineering and communication theory. At presents, the key factor that limits its solution at present is ISI produced by the frequency selectivity of a real composite communication channel.

To overcome this factor, the following classes of radio engineering information transmission systems are used: 1st class, in which information is transmitted in parallel and is implemented using the technology of multiplexing with orthogonal frequency division of channels and/or with space-time coding; 2) in which the transmission is carried out in a sequential manner, and the receiving of signals is carried out under conditions of ISI, including at information transfer rates higher than the Nyquist rate.

Despite the fact that at present the first class of systems has found wide application in the field of high-speed information transmission, it has a number of significant drawbacks in relation to the second systems class. At the same time, a number of results of the practical use of first-class systems indicate that their specific capacity limitation is about 4 bit/(Hz*s), which, taking into account the existing growth in the volume of transmitted information, becomes insufficient in the near future.

A retrospective analysis of methods for receiving and processing information in radio engineering data transmission systems with serial data in frequency-selective communication channels with ISI is carried out, It is made in order to develop approaches to increasing their specific capacity of such systems in modern conditions, that is, when they use PSK-n- and APSK-N-signals.

The results of solving the first of the tasks in the article, necessary to achieve the goal, are presented, related to the study of the functional complexity of the receiver, depending on the first and second forms of implementation of the receiving devices. The results are presented in the form of listing their advantages and disadvantages, as well as restrictions on their application in real conditions. The first form of implementation is based on the development of the theory of resolution time in relation to radio engineering systems with serial data transmission, the second one is the use of combined methods of optimal and suboptimal signal processing with ISI.

The practical significance of the obtained results lies in the determination of strict limitations of various forms of implementation of receivers operating under conditions of ISI in frequency selective communication channels, a critical analysis of the algorithms that implement them, and the formation of recommendations for their use.

Pages: 37-50
References
  1. Gonorovskiy I.S. Radiotekhnicheskie tsepi i signaly. Ch. 1. M.: Sov. radio. 1967. [in Russian]
  2. Mordvinov A.E. Issledovanie vozmozhnosti povysheniya chastotnoy effektivnosti liniy svyazi za schet ispol'zovaniya signalov s vzaimnoy interferentsiey simvolov: dis. … kand. tekhn. nauk: 05.12.04: data zashch. 12.10.08, data utv. 21.05.09. MEI (TU). [in Russian]
  3. Proakis J.G. Digital Communications. N.Y.: McGraw-Hill, 2001.
  4. Carmon Y., Shamai S., Weissman T. Comparison of the Achievable Rates in OFDM and Single Carrier Modulation with I.I.D. Inputs. Transactions on Information Theory. 2015. V. 61. № 4. P. 1795–1818.
  5. Klovskiy D.D. Peredacha diskretnykh soobshcheniy po radiokanalam. Izd. 2-e, pererab. i dop. M.: Radio i svyaz', 1982. [in Russian]
  6. Makh'yub Kh.E.A., Kisel' N.N., Grishchenko S.G. Povyshenie spektral'noy effektivnosti kanala v besprovodnykh sistemakh svyazi pyatogo pokoleniya na osnove sistemy massiv-MIMO. Izvestiya YuFU. Tekhnicheskie nauki. 2015. T. 172. № 11. S. 63–72. [in Russian]
  7. Nikolaev B.I. Posledovatel'naya peredacha diskretnykh soobshcheniy po nepreryvnym kanalam s pamyat'yu. M.: Radio i svyaz', 1988. [in Russian]
  8. Khabarov E.O. Razrabotka i issledovanie metodov peredachi diskretnykh signal'nykh posledovatel'nostey po kanalam s mezhsimvol'noy interferentsiey: dis. ... d-r tekhn. nauk: 05.12.13. Samara. 2013. [in Russian]
  9. Male J., Porte J., Gonzalez T. et al. Analysis of the Ordinary and Extraordinary Ionospheric Modes for NVIS Digital Communications Channels. Sensors 2021. V. 21. № 6. P. 1–16.
  10. Myung H.G., Goodman D.J. Single Carrier FDMA: A New Air Interface for Long Term Evolution. New Jersey: Wiley Telecom. 2008.
  11. Perehia E., Gong M.X. Gigabit wireless LANs: an overview of IEEE 802.11 ac and 802.11 ad.. ACM SIGMOBILE Mobile Computing and Communications Review, 2011. V. 15. № 3. P. 23–33.
  12. Ovchinnikov V.V. Adaptivnoe ekvalayzirovanie signalov s bystroy PPRCh dlya preodolenie dispersionnykh iskazheniy i povysheniya skrytnosti shirokopolosnoy KV svyazi: dis. ... kand. tekhn. nauk: 05.12.13. Yoshkar-Ola. 2020. [in Russian]
  13. MIL-STD-188-110B: Interoperability and Performance Standards for Data Modems. USA: US Department of Defense. 2000.
  14. MIL-STD-188-110D: Interoperability and Performance Standards for Data Modems. USA: US Department of Defense. 2017.
  15. Zaytseva Yu.M. Metody povysheniya effektivnosti ispol'zovaniya chastotnogo resursa v besprovodnykh shirokopolosnykh sistemakh svyazi. T-Comm: Telekommunikatsii i transport. 2012. № 2. S. 56–58. [in Russian]
  16. Frolov A.A. Analiz sovremennykh standartov: MCWILL, TD_SCDMA, WCDMA, IEEE 802.15.3A dlya primeneniya v SShP_sistemakh. T-Comm: Telekommunikatsii i transport. 2012. № 9. S. 144–148. [in Russian]
  17. Erokhin S.D., Zaytseva Yu.M. Analiz spektral'noy effektivnosti sovremennykh shirokopolosnykh sistem svyazi. Fundamental'nye problemy radioelektronnogo priborostroeniya. 2010. T. 10. № 1–3. S. 166–169. [in Russian]
  18. Hartley R.V.L. Transmission of Information. BSTJ. 1928. V. 7. № 3. P. 535–563.
  19. Teoriya informatsii i ee prilozheniya (sbornik perevodov). Pod red. A.A. Kharkevicha. M.: Gos. izd. fiz-mat. lit-ry. 1959. [in Russian]
  20. Kotel'nikov V.A. Teoriya potentsial'noy pomekhoustoychivosti. M.-L.: Gosenergoizdat. 1956. [in Russian]
  21. Shannon C.E. A Mathematical Theory of Communication. Bell System Technical J. 1948. V. 27. № 3. P. 379–423.
  22. Vozenkraft Dzh., Dzhekobc I. Teoreticheskie osnovy tekhniki svyazi. M.: Mir. 1969. [in Russian]
  23. Viterbi A.D. Printsipy kogerentnoy svyazi. Per. s angl. pod red. B.R. Levina M.: Sov. radio. 1970. [in Russian]
  24. Viterbi A.D., Omura Dzh.K. Printsipy tsifrovoy svyazi i kodirovaniya. Per. s angl. pod red. K.Sh. Zigangirova. M.: Radio i svyaz'. 1982. [in Russian]
  25. Kharkevich A.A. Bor'ba s pomekhami. M.: Nauka.1965. [in Russian]
  26. Fink L.M. Teoriya peredachi diskretnykh soobshcheniy. M.: Sov. radio. 1970[in Russian]
  27. Korzhik V.I., Fink L.M., Shchelkunov K.N. Raschet pomekhoustoychivosti sistem peredachi diskretnykh soobshcheniy: Spravochnik. M.: Radio i svyaz'. 1981. [in Russian]
  28. Gutkin L.S. Teoriya optimal'nykh metodov radiopriema pri fluktuatsionnykh pomekhakh. M.: Sov. radio. 1972. [in Russian]
  29. Gutkin L.S. Proektirovanie radiosistem i ustroystv: Ucheb. posobie dlya vuzov.  M.: Radio i svyaz'. 1986. [in Russian]
  30. Mikhaylov A.V. Vysokoeffektivnye optimal'nye sistemy svyazi. M.: Svyaz'. 1980. [in Russian]
  31. Filippov L.I. Teoriya peredachi diskretnykh signalov. M.: Vyssh. shkola. 1981. [in Russian]
  32. Tikhonov V.I. Optimal'nyy priem signalov. M.: Radio i svyaz'. 1983. [in Russian]
  33. Pomekhoustoychivost' i effektivnost' sistem peredachi informatsii. Pod red. A.G. Zyuko. M.: Radio i svyaz'. 1985. [in Russian]
  34. Adzhemov A.S, Nazarov M.V., Paramonov Yu.V., Sannikov V.G. Pomekhoustoychivost' i effektivnost' sistem peredachi informatsii. M.: MTUSI. 1997. [in Russian]
  35. Borisov V.I., Zinchuk V.M. Pomekhozashchishchennost' sistem radiosvyazi. Veroyatnostno vremennoy podkhod. M.: Radio i svyaz'. 1999. [in Russian]
  36. Pyatoshin Yu.P. Nekotorye svoystva m-ichnykh sistem svyazi s kodirovaniem. Problemy peredachi informatsii. 1968. T. 4. № 1. S. 45–51.
    [in Russian]
  37. Feer K. Besprovodnaya tsifrovaya svyaz'. Metody modulyatsii i rasshireniya spektra. Per. s angl. pod red. V.I. Zhuravleva. M.: Radio i svyaz'. 2000. [in Russian]
  38. Nyquist H. Certain Topics in Telegraph Transmission Theory. Trans. American IEE. 1928. № 2. P. 617–644.
  39. Anderson, J.B., Rusek F., Viktor Ӧ. Faster Than Nyquist Signaling. Proceeding of the IEEE. 2013. V. 101. № 8. P.1817–1830.
  40. Khabarov E.O. Razrabotka i issledovanie metodov peredachi diskretnykh signal'nykh posledovatel'nostey po kanalam s mezhsimvol'noy interferentsiey: dis. ... d-r tekhn. nauk: 05.12.13. Samara. 2013. [in Russian]
  41. Tufts D.W. Nyquist's problem – The joint optimization of transmitter and receiver in pulse amplitude modulation. in Proceedings of the IEEE. 1965. V. 53. № 3. P. 248–259.
  42. Marko N. Kann man ueber die Nyquistrate hinaus uebertragen. Moeglichkeiten und grenzen der digitalen uebertragung mit und ohne quanttisierte rueckkopplung. AEU. 1982. V. 36. № 6. P. 238–244.
  43. Mazo J.E. Faster than Nyquist-Signaling. The Bell System Technical Journal. 1975. V. 54. № 8. P. 1451–1462.
  44. Il'in G.I., Pol'skiy Yu.E. Dinamicheskiy diapazon i tochnost' radiotekhnicheskikh i optoelektronnykh izmeritel'nykh sistem. Itogi nauki i tekhniki. Ser. Radiotekhnika. 1989. T. 39. S. 67–114. [in Russian]
  45. Lerner I.M. Metod otsenki propusknoy sposobnosti real'nykh kanalov svyazi s mnogopozitsionnymi fazomanipulirovannymi signalami pri nalichii mezhsimvol'nykh iskazheniy i ego primenenie. T-Comm: Telekommunikatsii i transport. 2017. T. 11. № 8. S. 52–58. [in Russian]
  46. Lerner I.M. Analiticheskaya otsenka propusknoy sposobnosti kanala svyazi s chastotnoy kharakteristikoy rezonansnogo fil'tra pri nalichii mezhsimvol'nykh iskazheniy i ispol'zovanii mnogopozitsionnogo fazomanipulirovannogo signala. T-Comm: Telekommunikatsii i transport. 2017. T. 11. № 9. S. 65–73. [in Russian]
  47. Lerner I.M., Chernyavskiy S.M. Otsenka propusknoy sposobnosti real'nykh kanalov svyazi s AFMn-N-signalami pri nalichii MSI. T-Comm: Telekommunikatsii i transport. 2018. T. 12. № 4. S. 48–55. [in Russian]
  48. Lerner I.M., Fayzullin R.R., Ryabov I.V. Vysokoproizvoditel'nyy algoritm otsenki propusknoy sposobnosti kanalov svyazi, funktsioniruyushchikh na baze teorii razreshayushchego vremeni. Radiotekhnika. 2022. T. 86. № 4. S. 91–109. [in Russian]
  49. Lerner I.M., Il'in G.I., Il'in A.G. K voprosu o tsiklostatsionarnosti AFMn-N-signalov, nablyudaemykh na vykhode kanala svyazi s mezhsimvol'nymi iskazheniyami. Vestnik KGTU im. A.N. Tupoleva. 2018. № 3. S. 107–117. [in Russian]
  50. Lerner I.M., Il'in G.I. Chislennyy metod otsenki potentsial'noy propusknoy sposobnosti pri ispol'zovanii FMn-n-signala v kanale svyazi s mezhsimvol'nymi iskazheniyami. Vestnik KGTU im. A.N. Tupoleva, 2018. № 4. S. 138–149. [in Russian]
  51. Lerner I.M., Il'in G.I. Ob odnoy vozmozhnosti uvelicheniya skorosti peredachi pri nalichii destabiliziruyushchikh faktorov v sistemakh svyazi, ispol'zuyushchikh vzaimnuyu interferentsiyu simvolov. Fizika volnovykh protsessov i radiotekhnicheskie sistemy. 2017. T. 20. № 4. S. 24–34. [in Russian]
  52. Lerner I.M., Fayzullin R.R., Chernyavskiy S.M. K voprosu povysheniya spektral'noy effektivnosti fazovykh radiotekhnicheskikh sistem peredachi informatsii, funktsioniruyushchikh pri sil'nykh mezhsimvol'nykh iskazheniyakh. Izvestiya vysshikh uchebnykh zavedeniy. Aviatsionnaya tekhnika. 2018. № 1. S. 113–118. [in Russian]
  53. Lerner I.M., Fatykhov M.M., Il'in G.I. Osobennosti funktsionirovaniya kanalov svyazi s AFMn-N-signalami pri ispol'zovanii vzaimno korrelirovannymi simvolami. Fizika volnovykh protsessov i radiotekhnicheskie sistemy. 2019. T. 22. № 1. S. 36–49. [in Russian]
  54. Lerner I.M., Il'in G.I., Il'in A.G. Issledovanie veroyatnostnykh kharakteristik tsiklostatsionarnykh AFMn-N-signalov, nablyudaemykh na vykhode kanala svyazi s mezhsimvol'nymi iskazheniyami. Vestnik KGTU im. A.N. Tupoleva. 2018. № 4. S. 150–157. [in Russian]
  55. Lerner I.M., Khayrullin M.I., Il'in G.I., Il'in V.I. Osobennosti obrabotki mnogopozitsionnogo fazomanipulirovannogo signala s n diskretnymi sostoyaniyami v usloviyakh mezhsimvol'nykh iskazheniy v lineynom radiotrakte. Nelineynyy mir. 2017. T. 15. № 6. S. 54–63. EDN YMSBJB. [in Russian]
  56. Lerner I.M., Khayrullin M.I., Il'in G.I., Il'in V.I. Osobennosti obrabotki mnogopozitsionnogo fazomanipulirovannogo signala s n diskretnymi sostoyaniyami v usloviyakh mezhsimvol'nykh iskazheniy v lineynom radiotrakte pri rasstroyke po chastote. Nelineynyy mir. 2017. T. 15. № 6. S. 17–26. [in Russian]
  57. Lerner I.M., Kamaletdinov N.N. K voprosu uvelicheniya skorosti peredachi v fazovykh radiotekhnicheskikh sistemakh peredachi informatsii, rabotayushchikh pri sil'nykh mezhsimvol'nykh iskazheniyakh v lineynom radiotrakte. Naukoemkie tekhnologii v kosmicheskikh issledovaniyakh Zemli. 2017. T. 9. № 5. S. 92-104. [in Russian]
  58. Lerner I.M., Fayzullin R.R., Yaushev S.T. O povyshenii propusknoy sposobnosti besprovodnykh sistem svyazi s FMn-n-signalami v kanalakh svyazi s mezhsimvol'nymi iskazheniyami. Vestnik KGTU im. A.N. Tupoleva. 2019. № 3. S. 159–168. [in Russian]
  59. Lerner I.M. Otsenka propusknoy sposobnosti besprovodnykh sistem svyazi na osnove vybora optimal'noy kompleksnoy chastotnoy kharakteristiki kanala. Vestnik KGTU im. A.N. Tupoleva, 2019. № 4. S. 142–151. [in Russian]
  60. Lerner I.M. K voprosu optimizatsii amplitudno-chastotnykh kharakteristik kanalov svyazi s FMN-n-signalami, postroennykh na osnove teorii razreshayushchego vremeni. T-Comm: Telekommunikatsii i transport. 2019. T. 13. № 9. S. 36–49. [in Russian]
  61. Lerner I.M. O vliyanii formy amplitudno-chastotnoy kharakteristiki na propusknuyu sposobnost' kanala svyazi s pamyat'yu, ispol'zuyushchego printsipy teorii razreshayushchego vremeni, s AFMn-N-signalami. T-Comm: Telekommunikatsii i transport. 2019. T. 13. № 10. S. 45–59. [in Russian]
  62. Svid. o gos. registratsii programmy dlya EVM 2019665776 RF. I.M. Lerner, V.V. Kadushkin, S.M. Chernyavskiy. Zayavl. 30.10.19; opubl. 28.11.19. [in Russian]
  63. Sv-vo o gos. registratsii programmy dlya EVM 2021615058 RF. Programma dlya analiticheskoy otsenki razreshayushchego vremeni i propusknoy sposobnosti kanalov svyazi s mezhsimvol'nymi iskazheniyami (MSI), ispol'zuyushchikh AFMn-n-signaly v radiotekhnicheskikh sistemakh peredachi informatsii (RSPI). I.M. Lerner. Zayavl. 31.03.21; opubl. 02.04.21. [in Russian]
  64. Svid. o gos. registratsii programmy dlya EVM 2021615057 RF. Programma dlya analiticheskoy otsenki razreshayushchego vremeni i propusknoy sposobnosti kanalov svyazi s mezhsimvol'nymi iskazheniyami (MSI), ispol'zuyushchikh FMn-n-signaly v radiotekhnicheskikh sistemakh peredachi informatsii (RSPI). I.M. Lerner. Zayavl. 31.03.21; opubl. 02.04.21. [in Russian]
  65. Svid. o gos. registratsii programmy dlya EVM 2021615163 RF. Programma vychisleniya zavisimostey effektivnoy pamyati kanala s mezhsimvol'nymi iskazheniyami ot dlitel'nosti simvola dlya FMn-n i AFMn-N-signalov dlya radiotekhnicheskikh sistem peredachi informatsii (RSPI). I.M. Lerner, R.R. Fayzullin. Zayavl. 31.03.21; opubl. 05.04.21. [in Russian]
  66. Sid. o gos. registratsii programmy dlya EVM 2021615647 RF. Programmnyy kompleks dlya postroeniya kart oblastey okon prozrachnosti i granichnogo vremeni ustanovleniya informativnykh parametrov FMn-n- i AFMn-N-signalov dlya radiotekhnicheskikh sistem peredachi informatsii (RSPI). I.M. Lerner, R.R. Fayzullin. Zayavl. 31.03.21; opubl. 9.04.21. [in Russian]
  67. Svid. o gos. registratsii programmy dlya EVM 2021619969 RF. Programmnyy kompleks dlya otsenki naimen'shego chisla realizatsiy moduliruyushchey psevdosluchaynoy posledovatel'nosti FMn-n- i AFMn-N-signala, neobkhodimogo dlya formirovaniya tsiklo-statsionarnogo protsessa na vykhode kanala s pamyat'yu. I.M. Lerner. Zayavl. 11.06.21; opubl. 21.06.21. [in Russian]
  68. Liveris A.D., Georghiades S.N. Exploiting faster-than-Nyquist signaling. IEEE Trans, on Communications. 2003. V. 51. № 9. P. 1502–1511.
  69. Rusek F., Anderson J.B. Non Binary and Precoded Faster Than Nyquist Signaling. IEEE Transactions on Communications. 2008. V. 5. P. 808–817.
  70. Seshadri N., Anderson J.B. Asymptotic error performance of modulation codes in the presence of severe intersymbol interference. IEEE Transactions on Information Theory. 1988. V. 34. № 5. P. 1203–1216.
  71. Wang C.K., Lee L.S. Practically realizable digital transmission significantly below the Nyquist bandwidth. In Proc. IEEE Global Commun. Conf., Phoenix, AZ, USA. Dec. 1991. P. 1187–1191.
  72. Ovchinnikov V.V. Adaptivnoe ekvalayzirovanie signalov s bystroy PPRCh dlya preodolenie dispersionnykh iskazheniy i povysheniya skrytnosti shirokopolosnoy KV svyazi: dis. ... kand. tekhn. nauk: 05.12.13. Yoshkar-Ola. 2020. [in Russian]
  73. Nikolaev B.I. Posledovatel'naya peredacha diskretnykh soobshcheniy po nepreryvnym kanalam s pamyat'yu. M.: Radio i svyaz'. 1988. [in Russian]
  74. Ibrahim A., Bedeer E. Yanikomeroglu H. A novel low complexity faster-than-Nyquist (FTN) signaling detector for ultra high-order QAM. IEEE Open Journal of the Communications Society. 2021. V. 2. P. 2566–2580.
Date of receipt: 30.11.2022
Approved after review: 19.12.2022
Accepted for publication: 29.12.2022