350 rub
Journal Achievements of Modern Radioelectronics №1 for 2023 г.
Article in number:
Modern hybrid-integrated autodyne oscillators of microwave and mm-wave ranges and its applications. Part 16. Autodyne effect of injection-locked oscillators
Type of article: overview article
DOI: https://doi.org/10.18127/j20700784-202301-01
UDC: 621.373.12; 621.396.962.2
Authors:

V.Ya. Noskov1, E.V. Bogatyrev2, R.G. Galeev3, K.A. Ignatkov4, О.А. Chernykh5

1,4,5 Ural Federal University (Ekaterinburg, Russia)

2 Siberian Federal University (Krasnoyarsk, Russia)

3 JSC «NPP «Radiosvyaz»; Department of Radiophysics and Special Electronic Equipment of the M.F. Reshetnev SibSU (Krasnoyarsk, Russia)

 

Abstract:

A mathematical model of an autodyne oscillator (autodyne – AD) operating under conditions of synchronous exposure to a signal from a third-party source, as well as its own radiation reflected from the target, has been developed. The model is obtained in the form of a system of linearized differential equations in the vicinity of the stationary mode of the oscillator for small relative changes in the amplitude of the oscillations and the phase difference between the natural oscillations and the oscillations of the synchronizing source. It takes into account the time constants of changes (relaxation) of the amplitude and phase, respectively, the internal parameters of the oscillator (coefficients of autodyne gain, non-isochronicity and non-isodromity), as well as the conditions of external synchronization, the level and phase of its own radiation reflected from the target. The resulting system of linearized equations, taking into account the well-known duality principle, has sufficient generality to analyze the autodyne effect in synchronized AD with any type of active element (tunnel diodes, Gann diodes and avalanche-span diodes, field and bipolar transistors, etc.). These equations are used in the study of quasi-static and dynamic characteristics of synchronized BP.

At the same time, it was found that the synchronization of BP from an external oscillator eliminates the anharmonic distortion of signals characteristic of conventional (unstabilized) BP, which contributes to the expansion of their dynamic range. It is shown that in synchronized BP, by introducing an initial detuning between the frequencies of the external oscillator and the natural frequency of BP within the synchronization band, there is a possibility of a significant increase in the transmission coefficient of the autodyne signal compared to conventional BP. It is also established that the inertia of the phase synchronization process of the oscillator causes the uneven formation of the amplitude-frequency characteristics of the transmission coefficient of the synchronized BP by changing the amplitude of oscillations in the high frequency region. However, this unevenness, with the correct choice of synchronization parameters, is not an obstacle to registering signals in the entire range of the speeds of movement of location objects that exist in practice.

A mathematical model of a system of two mutually synchronized partial oscillators with strong coupling under the influence of its own reflected radiation has also been developed. The model is obtained in the form of a system of linearized differential equations of the fourth order for small relative changes in the oscillation amplitudes of partial oscillators, changes in frequency and phase difference. From this model it can be seen that the reflected radiation, acting on the oscillatory system of the first partial oscillator, causes an autodyne effect in the system of coupled oscillators, which consists in changes in the oscillation amplitudes of each partial oscillator, their phases, frequency and phase difference relative to their values of the stationary mode of the autonomous oscillator.

As a result of calculations and analysis of characteristics with variations in the initial parameters and conditions of mutual synchronization, it was found that autodyne changes in the frequency of generation of a system of coupled oscillators during the movement of a reflecting object cause nonlinearity of the reflected radiation phase and, accordingly, anharmonic distortions of all these changes in the parameters of the self-oscillating system, as with conventional AD. However, the degree and type of these distortions in this system depend on the amplitude and phase ratios of the components of the autodyne response and are determined by the values of the internal parameters of partial oscillators, such as their non-isochronicity, amplitude and frequency detection. In addition, the degree of signal distortion is also determined by the conditions of internal mutual communication between partial oscillators, the value of the relative detuning of the natural frequencies of partial oscillators and the value of the external feedback parameter of the «oscillator –reflecting object» system.

It has been established that a partial oscillator whose own Q-factor of the oscillatory system or output power is greater than that of the second partial oscillator is stabilizing, it causes a decrease in the magnitude of the autodyne deviation of the generation frequency and, thereby, the degree of signal distortion. Compared with conventional autodyne systems based on single oscillators, systems of coupled autodyne oscillators have a number of positive properties. Due to significantly lower frequency deviation, they provide an improvement in the waveform at the same levels of reflected radiation and an expansion of the dynamic range of the autodyne system.

The formation of phase-shifted two signals makes it possible to determine the sign of the radial velocity of reflecting objects and use methods of quadrature signal processing. These capabilities significantly expand the scope of AD in solving problems of radio wave control of motion parameters in the physics of fast-flowing processes, near-range radar and measuring technology.

The results of the experimental studies have confirmed the adequacy of the developed mathematical models of synchronized autodyne systems with respect to the analysis of autodyne parameters and characteristics both at quasi-statistically small and high speeds of movement of location objects. From the results of the studies carried out, it also follows that it is promising to develop integrated autodyne modules with frequency synchronization from an additional low-power oscillator, as well as on the basis of mutually synchronized oscillators. Such technical solutions are of particular relevance in the range of millimeter and shorter waves.

Pages: 5-36
References
  1. Votoropin S.D., Noskov V.Ya., Smol'skij S.M. Sovremennye gibridno-integral'nye avtodinnye generatory mikrovolnovogo i millimetrovogo diapazonov i ih primenenie. Ch. 1. Konstruktorsko-tehnologicheskie dostizheniya. Uspehi sovremennoj radioelektroniki. 2006. № 12. S.3–30. [in Russian]
  2. Votoropin S.D., Noskov V.Ya., Smol'skij S.M. Sovremennye gibridno-integral'nye avtodinnye generatory mikrovolnovogo i millimetrovogo diapazonov i ih primenenie. Ch. 2. Teoreticheskie i eksperimental'nye issledovaniya. Uspehi sovremennoj radioelektroniki. 2007. № 7. S. 3–33. [in Russian]
  3. Votoropin S.D., Noskov V.Ya., Smol'skij S.M. Sovremennye gibridno-integral'nye avtodinnye generatory mikrovolnovogo i millimetrovogo diapazonov i ih primenenie. Ch. 3. Funkcional'nye osobennosti avtodinov. Uspehi sovremennoj radioelektroniki. 2007. № 11. S. 25–49. [in Russian]
  4. Votoropin S.D., Noskov V.Ya., Smol'skij S.M. Sovremennye gibridno-integral'nye avtodinnye generatory mikrovolnovogo i millimetrovogo diapazonov i ih primenenie. Ch. 4. Issledovaniya mnogochastotnyh avtodinov. Uspehi sovremennoj radioelektroniki. 2008. № 5. S. 65–88. [in Russian]
  5. Votoropin S.D., Noskov V.Ya., Smol'skij S.M. Sovremennye gibridno-integral'nye avtodinnye generatory mikrovolnovogo i millimetrovogo diapazonov i ih primenenie. Ch. 5. Issledovaniya avtodinov s chastotnoj modulyaciej. Uspehi sovremennoj radioelektroniki. 2009. № 3. S. 3–50. [in Russian]
  6. Noskov V.Ya., Smol'skij S.M. Sovremennye gibridno-integral'nye avtodinnye generatory mikrovolnovogo i millimetrovogo diapazonov i ih primenenie. Ch. 6. Issledovaniya radioimpul'snyh avtodinov. Uspehi sovremennoj radioelektroniki. 2009. № 6. S. 3–51. [in Russian]
  7. Noskov V.Ya., Ignatkov K.A., Smol'skij S.M. Sovremennye gibridno-integral'nye avtodinnye generatory mikrovolnovogo i millimetrovogo diapazonov i ih primenenie. Ch. 7. Dinamika formirovaniya avtodinnyh i modulyacionnyh harakteristik. Uspehi sovremennoj radioelektroniki. 2013. № 6. S. 3–52. [in Russian]
  8. Noskov V.Ya., Ignatkov K.A., Smol'skij S.M. Sovremennye gibridno-integral'nye avtodinnye generatory mikrovolnovogo i millimetrovogo diapazonov i ih primenenie. Ch. 8. Avtodiny so stabilizaciej chastoty vneshnim vysokodobrotnym rezonatorom. Uspehi sovremennoj radioelektroniki. 2013. № 12. S. 3–42. [in Russian]
  9. Noskov V.Ya., Varavin A.V., Vasil'ev A.C., Ermak G.P., Zakarlyuk N.M., Ignatkov K.A., Smol'skij S.M. Sovremennye gibridno-integral'nye avtodinnye generatory mikrovolnovogo i millimetrovogo diapazonov i ih primenenie. Ch. 9. Radiolokacionnoe primenenie avtodinov. Uspehi sovremennoj radioelektroniki. 2016. № 3. S. 32–86. [in Russian]
  10. Noskov V.Ya., Smol'skij S.M., Ignatkov K.A., Mishin D.Ya., Chupahin A.P. Sovremennye gibridno-integral'nye avtodinnye generatory mikrovolnovogo i millimetrovogo diapazonov i ih primenenie. Ch. 10. Osnovy analiza i rascheta parametrov avtodinov s uchetom shumov. Uspehi sovremennoj radioelektroniki. 2018. № 3. S. 18–52. [in Russian]
  11. Noskov V.Ya., Smol'skij S.M., Ignatkov K.A., Mishin D.Ya., Chupahin A.P. Sovremennye gibridno-integral'nye avtodinnye generatory mikrovolnovogo i millimetrovogo diapazonov i ih primenenie. Ch. 11. Osnovy realizacii avtodinov. Uspehi sovremennoj radioelektroniki. 2019. № 2. S. 5–33. DOI: 10.18127/j20700784-201902-01. [in Russian]
  12. Noskov V.Ya., Smol'skij S.M., Ignatkov K.A., Chupahin A.P. Sovremennye gibridno-integral'nye avtodinnye generatory mikrovolnovogo i millimetrovogo diapazonov i ih primenenie. Ch. 12. Signaly odnokonturnyh avtodinov pri sil'nom otrazhennom izluchenii. Uspehi sovremennoj radioelektroniki. 2019. № 5. S. 5–19. DOI: 10.18127/j20700784-201905-01. [in Russian]
  13. Noskov V.Ya., Smol'skiy S.M., Ignatkov K.A., Chupakhin A.P. Sovremennye gibridno-integral'nye avtodinnye generatory mikrovolnovogo i millimetrovogo diapazonov i ikh primenenie. Ch. 13. Stabilizirovannye vneshnim rezonatorom avtodiny pri sil'nom otrazhennom izluchenii. Uspekhi sovremennoy radioelektroniki. 2020. № 1. S. 5–21. DOI 10.18127/j20700784-202001-01. [in Russian]
  14. Noskov V.Ya., Bogatyrev E.V., Galeev R.G., Ignatkov K.A., Shaidurov K.D. Modern hybrid-integrated autodyne oscillators of microwave and mm-wave ranges and its applications. Part 14. Autodynes with amplitude-frequency modulation. Achievements of modern radioelectronics. 2022. V. 76. № 8. P. 17–51. DOI: https://doi.org/ 10.18127/j20700784-202208-02 [in Russian]
  15. Noskov V.Ya., Bogatyrev E.V., Galeev R.G., Ignatkov K.A., Shaidurov K.D.  Modern hybrid-integrated autodyne oscillators of microwave and mm-wave ranges and its applications. Part 15. Signal and noise characteristics of frequency-modulated autodynes. Achievements of modern radioelectronics. 2022. V. 76. № 9. P. 5–36. DOI: https://doi.org/10.18127/j20700784-202209-02 [in Russian]
  16. Usanov D.A., Skripal A.V., Postelga A.E. A microwave autodyne meter of vibration parameters. Instruments & Experimental Techniques. 2004. V. 47. № 5. P. 689–693.
  17. Alidoost S.A., Sadeghzade R., Fatemi R. Autodyne system with a single antenna. In Proceedings of the 11-th International Radar Symposium (IRS 2010). Vilnius (Lithuania). P. 406–409. [in Russian]
  18. Usanov D.A., Postelga A.E. Reconstruction of Complicated Movement of Part of the Human Body Using Radio Wave Autodyne Signal. Biomedical Engineering. 2011. V. 45. № 1. P. 6–8. [in Russian]
  19. Noskov V.Ya., Ignatkov K.A., Chupakhin A.P. Primenenie dvukhdiodnykh avtodinov v ustroystvakh radiovolnovogo kontrolya razmerov izdeliy. Izmeritel'naya tekhnika. 2016. № 7. S. 24–28. [in Russian]
  20. Chernyavskiy A.Zh., Danilin S.A., Vorokh D.A., Danilin A.I. Primenenie pervichnykh avtodinnykh SVCh preobrazovateley dlya diagnostirovaniya ustanovok i oborudovaniya energeticheskogo i transportnogo mashinostroeniya. Datchiki i sistemy. 2021. № 3. S. 23–36. [in Russian]
  21. Gershenzon E.M., Tumanov B.N., Buzykin V.T., Kalygina V.M., Levit B.I. Obshchie kharakteristiki i osobennosti avtodinnogo effekta v avtogeneratorakh. Radiotekhnika i elektronika. 1982. T. 27. № 1. S. 104–112. [in Russian]
  22. Ermak G.P., Lebedev A.B., Lukin K.A. i dr. Teoreticheskoe i eksperimental'noe issledovanie GDI-avtodina. Khar'kov: Institut radiofiziki i elektroniki AN USSR. 1984. Preprint № 262. [in Russian]
  23. Noskov V.Ya. Analiz avtodinnogo effekta v SVCh generatorakh s tsep'yu avtosmeshcheniya pervogo poryadka. Elektronnaya tekhnika. Ser. 1. SVCh-tekhnika. 1992. № 6 (450). S. 24–30. [in Russian]
  24. Usanov D.A., Skripal' Al.V., Skripal' An.V. Fizika poluprovodnikovykh radiochastotnykh i opticheskikh avtodinov. Saratov: Izd-vo Saratovskogo un-ta. 2003. [in Russian]
  25. Noskov V.Ya., Bogatyrev E.V., Galeev R.G., Ignatkov K.A., Shaydurov K.D. Printsip deystviya avtodinnogo optoelektronnogo priemoperedatchika dlya sistem blizhney radiolokatsii. Ural Radio Engineering Journal. 2022. T. 6. № 3. S. 269–295. [in Russian]
  26. Komarov I.V., Smolskiy S.M. Fundamentals of short-range FM radar. Norwood: Artech House, 2003. DOI: 10.1109/MAES.2004.1346903.
  27. Votoropin S.D., Noskov V.Ya., Smol'skiy S.M. Analiz avtodinnogo effekta generatorov s lineynoy chastotnoy modulyatsiey. Izv. vuzov. Fizika. 2008. T. 51. № 6. S. 54–60. [in Russian]
  28. Votoropin S.D., Noskov V.Ya., Smol'skiy S.M. Analiz avtodinnogo effekta radioimpul'snogo generatora. Izv. vuzov. Fizika. 2008. T. 51. № 3. S. 64–70. [in Russian]
  29. Votoropin S.D., Noskov V.Ya., Smol'skiy S.M. Analiz avtodinnogo effekta radioimpul'snogo generatora s chastotnoy modulyatsiey. Izv. vuzov. Fizika. 2008. T. 51. № 7. S. 80–89. [in Russian]
  30. Noskov V.Ya., Smol'skiy S.M. Avtodinnyy effekt v generatorakh s amplitudnoy modulyatsiey. Radiotekhnika. 2011. № 2. S. 21–36.
    [in Russian]
  31. Noskov V.Ya., Galeev R.G., Bogatyrev E.V., Ignatkov K.A., Shaidurov K.D. Autodyne Sensor Signals with Amplitude-Frequency Modulation of Radiation. Sensors. 2020. V. 20. № 24. 7077.
  32. Votoropin S.D., Noskov V.Ya. Signaly avtodinov KVCh-diapazona dlin voln pri kontrole parametrov podvizhnykh ob"ektov. Izv. vuzov. Fizika. 2000. T. 43. № 7. S. 54–60. [in Russian]
  33. Noskov V.Ya., Smol'skiy S.M. Svyaz' nelineynykh iskazheniy signalov i protsessa ustanovleniya avtodinnogo otklika SVCh generatorov. Radiotekhnika. 2010. № 1. S. 55–66. [in Russian]
  34. Noskov V.Ya., Ignatkov K.A. Osobennosti shumovykh kharakteristik avtodinov pri sil'noy vneshney obratnoy svyazi. Izv. vuzov. Fizika. 2013. T. 56. № 12. S. 112–124. [in Russian]
  35. Noskov V.Ya., Ignatkov K.A. Dinamicheskie osobennosti avtodinnykh signalov. Izv. vuzov. Fizika. 2013. T. 56. № 4. S. 56–64. [in Russian]
  36. Noskov V.Ya., Smol'skiy S.M., Ignatkov K.A., Chupakhin A.P. Signaly avtodinnykh moduley s vneshnim detektirovaniem. Ural Radio Engineering Journal. 2018. T. 2. № 4. S. 20–40. [in Russian]
  37. Noskov V.Ya., Ignatkov K.A., Shaidurov K.D., Ermak G.P., Vasiliev A.S. The dynamics of autodyne signal and noise characteristic formation at high target speeds. Telecommunication and Radio Engineering. 2020. V. 79. № 6. P. 493–508.
  38. Noskov V.Ya., Ermak G.P., Vasil'ev A.S., Ignatkov K.A., Shaydurov K.D. Zavisimost' signal'nykh i shumovykh kharakteristik avtodinov s chastotnoy modulyatsiey ot rasstoyaniya do ob"ekta lokatsii. Izv. vuzov. Radioelektronika. 2021. T. 64. № 4. S. 247–260. [in Russian]
  39. Morosanov S.A., Smol'skiy S.M., Filitsina Yu.A. Dvukhtaktnye tranzistornye generatory i avtodiny. Radiotekhnika i elektronika. 1982. T. 27. № 4. S. 764–769. [in Russian]
  40. Gershenzon E.M., Levit B.I., Noskov V.Ya., Tumanov B.N. Avtodinnyy effekt v dvukhchastotnykh generatorakh. Elektronnaya tekhnika. Ser. 1. Elektronika SVCh. 1983. № 10. S. 11–16. [in Russian]
  41. Noskov V.Ya. Avtodinnyy effekt v mnogochastotnykh avtogeneratorakh. Izv. vuzov. Radiofizika. 1992. T. 35, № 9. S. 778–789.
    [in Russian]
  42. Noskov V.Ya. Dvukhdiodnyy avtodinnyy priemoperedatchik. Pribory i tekhnika eksperimenta. 2015. № 4. S. 65–70. [in Russian]
  43. Noskov V.Ya., Ignatkov K.A., Chupakhin A.P. Avtodinnyy effekt sistemy dvukh vzaimno sinkhronizirovannykh generatorov pri sil'noy svyazi. Radiotekhnika i elektronika. 2018. T. 63. № 2. S. 200–208. [in Russian]
  44. Noskov V.Ya., Ignatkov K.A. Shumovye kharakteristiki avtodinov so stabilizatsiey chastoty vneshnim vysokodobrotnym rezonatorom. Radiotekhnika i elektronika. 2016. T. 61. № 9. S. 905–918. [in Russian]
  45. Tereshchenko A.F. Vozdeystvie otrazhennogo signala na sinkhronizirovannyy klistronnyy generator. Elektronnaya tekhnika. Ser. 1. Elektronika SVCh. 1966. № 2. S. 67–78. [in Russian]
  46. Artemenkov S.L., Smol'skiy S.M. Avtodinnye svoystva sinkhronizirovannykh tranzistornykh avtogeneratorov. Metody i ustroystva formirovaniya i obrabotki radiosignalov. M.: Trudy MEI. 1982. V. 579. C. 81–86. [in Russian]
  47. Artemenkov S.L., Smol'skiy S.M. Stabilizatsiya chastoty tranzistornykh avtodinov dopolnitel'nym sinkhrosignalom. Sovremennye problemy stabilizatsii chastoty. M.: Trudy MEI. 1983. V. 8. C. 30–35. [in Russian]
  48. Noskov V.Ya., Ignatkov K.A., Shaydurov K.D. Avtodinnyy effekt SVCh generatorov s vneshney sinkhronizatsiey. Radiotekhnika i
    elektronika. 2020. T. 65. № 6. S. 612–620. [in Russian]
  49. Morosanov S.A., Smol'skiy S.M. Kol'tsevye tranzistornye avtodiny. Izv. vuzov. Radioelektronika. 1984. T. 27. № 11. S. 95–98. [in Russian]
  50. Popov A.V., Smol'skiy S.M., Shatov V.L. Vzaimnaya sinkhronizatsiya dvukh tranzistornykh avtodinov. Radiotekhnika i elektronika. 1990. № 2. S. 382–388. [in Russian]
  51. Votoropin S.D., Noskov V.Ya. Obobshchennaya model' i osnovnye uravneniya avtodinnoy GIS KVCh na osnove mezaplanarnykh gannovskikh struktur. Izv. vuzov. Fizika. 2001. T. 44. № 12. S. 23–30. [in Russian]
  52. Landa P.S. Nelineynye kolebaniya i volny. M.: Knizhnyy dom «LIBROKOM». 2010. [in Russian]
  53. Maydanovskiy A.S., Novikov S.S. Simmetrichnye i nesimmetrichnye sistemy sil'no svyazannykh avtogeneratorov. Radiotekhnika i
    elektronika. 2003. T. 48. № 5. S. 595–600. [in Russian]
  54. Novikov S.S., Ustyukevich A.A. Razrushenie kogerentnogo rezhima v sisteme dvukh avtogeneratorov pri sil'nykh rezonansnykh vzaimnykh svyazyakh. Izv. vuzov. Prikladnaya nelineynaya dinamika. 2012. T. 20. № 5. S. 14–25. [in Russian]
  55. Novikov S.S., Ustyukevich A.A. Neustoychivost' sinkhronnykh rezhimov v sisteme dvukh svyazannykh SVCh-avtogeneratorov. Izv. vuzov. Fizika. 2012. T. 55. № 11. S. 51–56. [in Russian]
  56. Braun R.M. Self Mixing Oscillators at Q-band Using Gunn Diode Solid State Sources. University of Cape Town. 1982.
  57. Pantoja F.R.; Calazans E.T. Theoretical and Experimental Studies of Gain Compression of Millimeter-Wave Self-Oscillating Mixers. IEEE Transactions on Microwave Theory and Techniques. 1985. V. 33. № 3. P. 181–186.
  58. Sironen M., Qian Y., Itoh T. A subharmonic self-oscillating mixer with integrated antenna for 60-GHz wireless application. IEEE Trans. Microw. Theory Tech. 2001. V. 49. P. 442–450.
  59. Votoropin S.D, Zakarlyuk N.M., Noskov V.Ya., Smol'skiy S.M. O printsipial'noy nevozmozhnosti samosinkhronizatsii avtodina izlucheniem, otrazhennym ot dvizhushchegosya ob"ekta. Izv. vuzov. Fizika. 2007. T. 50. № 9. S. 53–59. [in Russian]
  60. Noskov V.Ya., Ignatkov K.A., Shaidurov K.D. Frequency Deviation of Injection-Locked Microwave Autodynes. Radioengineering. 2019. V. 28. № 4. P. 721–728.
  61. Noskov V.Ya., Ignatkov K.A., Shaidurov K.D. Autodyne Signal Features of Frequency-Locked Microwave Oscillators. 29th International Crimean Conference: Microwave & Telecommunication Technology (CriMiCo'2019): ITM Web of Conferences. V. 30. № 12012.
  62. Noskov V.Ya., Ignatkov K.A., Shaidurov K.D. Dynamic Characteristics of Frequency-Locked Autodynes. 29th International Crimean Conference: Microwave & Telecommunication Technology (CriMiCo'2019): ITM Web of Conferences. V. 30. № 12009.
  63. Noskov V.Ya., Ignatkov K.A., Shaydurov K.D. Osobennosti avtodinnykh signalov sinkhronizirovannykh SVCh generatorov. Sb: «SVCh-tekhnika i telekommunikatsionnye tekhnologii». 2020. V. 1-1. S. 436–437. Sevastopol', 2020. ISSN 2619–1628. [in Russian]
  64. Noskov V.Ya., Ignatkov K.A., Shaydurov K.D. Dinamicheskie kharakteristiki sinkhronizirovannykh avtodinov. Sb: «SVCh-tekhnika i telekommunikatsionnye tekhnologii». 2020. Vyp. 1–1. S. 428–429. Sevastopol', 2020. ISSN 2619–1628. [in Russian]
  65. Makharinskiy S.V., Minakova I.I. Metod ekvivalentnoy dobrotnosti dlya issledovaniy mnogokonturnykh avtokolebatel'nykh sistem. Izvestiya vuzov. Radiofizika. 1973. T. 16. № 6. C. 903–908. [in Russian]
  66. Golant M.B., Bobrovskiy Yu.L. Generatory SVCh maloy moshchnosti: Voprosy optimizatsii parametrov. Pod red. N.A. Devyatkova. M.: Sov. radio. 1977. [in Russian]
  67. Noskov V.Ya., Ignatkov K.A., Smol'skiy S.M. Zavisimost' avtodinnykh kharakteristik ot vnutrennikh parametrov SVCh generatorov.
    Radiotekhnika. 2012. № 6. S. 24–42. [in Russian]
  68. Kurokava K. Injection Locking of Microwave Solid-State Oscillators. Proceedings of the IEEE. 1973. V. 61. № 10. P. 1386–1410.
  69. Fomin N.N., Andreev V.S., Vorobeychikov E.S. i dr. Radiotekhnicheskie ustroystva SVCh na sinkhronizirovannykh generatorakh. Pod red. N.N. Fomina. M.: Radio i svyaz'. 1991. [in Russian]
  70. Noskov V.Ya., Ignatkov K.A. O primenimosti kvazistaticheskogo metoda analiza avtodinnykh sistem. Izv. vuzov. Radioelektronika. 2014. T. 57. № 3. S. 44–56. [in Russian]
  71. Komarov I.V., Smol'skiy S.M. Osnovy teorii radiolokatsionnykh sistem s nepreryvnym izlucheniem chastotno-modulirovannykh kolebaniy. M.: Goryachaya liniya. Telekom. 2010. [in Russian]
  72. Noskov V.Ya., Ignatkov K.A., Smolskiy S.M. Determination of Autodyne Oscillator Parameters by the Beating Metod. Telecommunication Sciences. 2012. V. 3. № 1. P. 35–45.
  73. Noskov V.Ya., Ignatkov K.A., Smolskiy S.M. Modulation Characteristics of Microwave Autodyne Oscillators. Telecommunication Sciences. 2012. V. 3. № 2. P. 44–52.
  74. Noskov V.Ya., Ignatkov K.A., Chupahin A.P., Ermak G.P. Particularities of Double-Diode Autodyne Characteristics. 9-th International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter, and Submillimeter Waves (MSMW'16). (Kharkov, Ukraine, June 20-24, 2016). A-23. P. 1–3.
  75. Noskov V.Ya., Ermak G.P., Varavin A.S. Double-Diode Autodyne of 8mm-Range on Gunn Diodes. 9-th International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter, and Submillimeter Waves (MSMW'16), (Kharkov, Ukraine, June 20-24, 2016). A-24. P. 1–3.
  76. Noskov V.Ya., Ignatkov K.A., Chupahin A.P., Ermak G.P., Vasiliev A.S. Mathematical Model of a Double-Diode Autodyne. 9-th International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter, and Submillimeter Waves (MSMW'16), (Kharkov, Ukraine, June 20-24, 2016). E-28. P. 1–3.
  77. Ermak G.P., Vasiliev A.S., Noskov V.Ya., Ignatkov K.A., Chupahin A.P., Smolskiy S.M. Signal Analysis of a Double-Diode Autodyne. 11th International Conference on Antenna Theory and Techniques (ICATT). 24-27 May, 2017. Kyiv, Ukraine. P. 338–342.
  78. Noskov V.Ya., Smol'skiy S.M. Osnovnye svoystva dvukhdiodnykh avtodinov i ikh primenenie. 20-ya Mezhdunarodnaya Krymskaya konferentsiya «SVCh-tekhnika i telekommunikatsionnye tekhnologii» (KryMiKo'2010). Sevastopol'. 2010. S. 1051–1054. [in Russian]

 

Date of receipt: 25.11.2022
Approved after review: 20.12.2022
Accepted for publication: 29.12.2022