350 rub
Journal Achievements of Modern Radioelectronics №9 for 2022 г.
Article in number:
Modern hybrid-integrated autodyne oscillators of microwave and mm-wave ranges and its applications. Part 15. Signal and noise characteristics of frequency-modulated autodynes
Type of article: overview article
DOI: https://doi.org/10.18127/j20700784-202209-02
UDC: 621.373.12; 621.391.822; 621.396.962.2
Authors:

V.Ya. Noskov1, E.V. Bogatyrev2, R.G. Galeev3, K.A. Ignatkov4, K.D. Shaidurov5

1,4,5 Ural Federal University (Ekaterinburg, Russia)

2 Siberian Federal University (Krasnoyarsk, Russia)

3 JSC «NPP «Radiosvyaz»; Department of Radiophysics and Special Electronic Equipment of the M.F. Reshetnev SibSU (Krasnoyarsk, Russia)

 

Abstract:

Autodynes (AD) with frequency modulation (FM) belong to the class of autoparametric short-range radar systems (SBRL) with delayed feedback, in which, under the influence of their own radiation reflected from the location object, autodyne changes in the parameters of the generator occur: amplitude and frequency of oscillations. These changes cause specific distortions in the formation of signal and noise characteristics. This phenomenon, inherent in all types of generators with all the laws and methods of FM, creates problems in signal processing, narrows dynamic range of the autodyne system and limits the scope of AD, especially in the ranges of millimeter and shorter waves. As the radiation wavelength decreases, the period of the autodyne signal becomes comparable or even less than the delay time of the reflected radiation. For such conditions, there is currently no mathematical model of AM with FM, which provides an adequate description of the obtained results of experimentally observed phenomena and the search for ways to solve this problem.

The purpose of the work is to summarize the results of research related to the development of a mathematical model of AM with FM based on the methods of the theory of systems with delay, and on its basis to study the signal and noise characteristics of an autodyne generator under the influence of its own reflected radiation with different FM laws, and also consider the influence of the nonlinearity of the modulation characteristics of real generators on the formation of autodyne signals.

A general solution of the system of equations for a single-circuit FM oscillator is presented, taking into account intrinsic noise, as well as an arbitrary ratio of the delay time of the reflected radiation and the period of the autodyne signal. The results of studies of the dependence of the signal shape and the features of the formation of noise characteristics of IM on the parameters of the FM, its law and the distance to the location object, as well as the influence of the feedback parameter of the «generator – location object» system and the nonlinearity of the modulation characteristic on the formation of autodyne signals are presented. The results of experimental studies performed on the example of an 8-mm Gunn diode generator confirmed the conclusions of the theoretical analysis.

The results of the performed studies allow, based on the given parameters of the used generators, to calculate the signal and noise characteristics of AM with FM, necessary for their correct use in advanced SLRS. In addition, the main requirements and recommendations for autodyne modules intended for FM SLBRL are formulated.

Pages: 15-55
References
  1. Votoropin S.D., Noskov V.Ya., Smol'skij S.M. Sovremennye gibridno-integral'nye avtodinnye generatory mikrovolnovogo i millimetrovogo diapazonov i ih primenenie. Ch. 1. Konstruktorsko-tehnologicheskie dostizheniya. Uspehi sovremennoj radioelektroniki. 2006. № 12. S.3–30. [in Russian]
  2. Votoropin S.D., Noskov V.Ya., Smol'skij S.M. Sovremennye gibridno-integral'nye avtodinnye generatory mikrovolnovogo i millimetrovogo diapazonov i ih primenenie. Ch. 2. Teoreticheskie i eksperimental'nye issledovaniya. Uspehi sovremennoj radioelektroniki. 2007. № 7. S. 3–33. [in Russian]
  3. Votoropin S.D., Noskov V.Ya., Smol'skij S.M. Sovremennye gibridno-integral'nye avtodinnye generatory mikrovolnovogo i millimetrovogo diapazonov i ih primenenie. Ch. 3. Funkcional'nye osobennosti avtodinov. Uspehi sovremennoj radioelektroniki. 2007. № 11. S. 25–49. [in Russian]
  4. Votoropin S.D., Noskov V.Ya., Smol'skij S.M. Sovremennye gibridno-integral'nye avtodinnye generatory mikrovolnovogo i millimetrovogo diapazonov i ih primenenie. Ch. 4. Issledovaniya mnogochastotnyh avtodinov. Uspehi sovremennoj radioelektroniki. 2008. № 5. S. 65–88. [in Russian]
  5. Votoropin S.D., Noskov V.Ya., Smol'skij S.M. Sovremennye gibridno-integral'nye avtodinnye generatory mikrovolnovogo i millimetrovogo diapazonov i ih primenenie. Ch. 5. Issledovaniya avtodinov s chastotnoj modulyaciej. Uspehi sovremennoj radioelektroniki. 2009. № 3. S. 3–50. [in Russian]
  6. Noskov V.Ya., Smol'skij S.M. Sovremennye gibridno-integral'nye avtodinnye generatory mikrovolnovogo i millimetrovogo diapazonov i ih primenenie. Ch. 6. Issledovaniya radioimpul'snyh avtodinov. Uspehi sovremennoj radioelektroniki. 2009. № 6. S. 3–51. [in Russian]
  7. Noskov V.Ya., Ignatkov K.A., Smol'skij S.M. Sovremennye gibridno-integral'nye avtodinnye generatory mikrovolnovogo i millimetrovogo diapazonov i ih primenenie. Ch. 7. Dinamika formirovaniya avtodinnyh i modulyacionnyh harakteristik. Uspehi sovremennoj radioelektroniki. 2013. № 6. S. 3–52. [in Russian]
  8. Noskov V.Ya., Ignatkov K.A., Smol'skij S.M. Sovremennye gibridno-integral'nye avtodinnye generatory mikrovolnovogo i millimetrovogo diapazonov i ih primenenie. Ch. 8. Avtodiny so stabilizaciej chastoty vneshnim vysokodobrotnym rezonatorom. Uspehi sovremennoj radioelektroniki. 2013. № 12. S. 3–42. [in Russian]
  9. Noskov V.Ya., Varavin A.V., Vasil'ev A.C., Ermak G.P., Zakarlyuk N.M., Ignatkov K.A., Smol'skij S.M. Sovremennye gibridno-integral'nye avtodinnye generatory mikrovolnovogo i millimetrovogo diapazonov i ih primenenie. Ch. 9. Radiolokacionnoe primenenie avtodinov. Uspehi sovremennoj radioelektroniki. 2016. № 3. S. 32–86. [in Russian]
  10. Noskov V.Ya., Smol'skij S.M., Ignatkov K.A., Mishin D.Ya., Chupahin A.P. Sovremennye gibridno-integral'nye avtodinnye generatory mikrovolnovogo i millimetrovogo diapazonov i ih primenenie. Ch. 10. Osnovy analiza i rascheta parametrov avtodinov s uchetom shumov. Uspehi sovremennoj radioelektroniki. 2018. № 3. S. 18–52. [in Russian]
  11. Noskov V.Ya., Smol'skij S.M., Ignatkov K.A., Mishin D.Ya., Chupahin A.P. Sovremennye gibridno-integral'nye avtodinnye generatory mikrovolnovogo i millimetrovogo diapazonov i ih primenenie. Ch. 11. Osnovy realizacii avtodinov. Uspehi sovremennoj radioelektroniki. 2019. № 2. S. 5–33. DOI: 10.18127/j20700784-201902-01. [in Russian]
  12. Noskov V.Ya., Smol'skij S.M., Ignatkov K.A., Chupahin A.P. Sovremennye gibridno-integral'nye avtodinnye generatory mikrovolnovogo i millimetrovogo diapazonov i ih primenenie. Ch. 12. Signaly odnokonturnyh avtodinov pri sil'nom otrazhennom izluchenii. Uspehi sovremennoj radioelektroniki. 2019. № 5. S. 5–19. DOI: 10.18127/j20700784-201905-01. [in Russian]
  13. Noskov V.Ya., Smol'skiy S.M., Ignatkov K.A., Chupakhin A.P. Sovremennye gibridno-integral'nye avtodinnye generatory mikrovolnovogo i millimetrovogo diapazonov i ikh primenenie. Ch. 13. Stabilizirovannye vneshnim rezonatorom avtodiny pri sil'nom otrazhennom izluchenii. Uspekhi sovremennoy radioelektroniki. 2020. № 1. S. 5–21. DOI 10.18127/j20700784-202001-01. [in Russian]
  14. Noskov V.Ya., Bogatyrev E.V., Galeev R.G., Ignatkov K.A., Shaidurov K.D. Modern hybrid-integrated autodyne oscillators of microwave and mm-wave ranges and its applications. Part 14. Autodynes with amplitude-frequency modulation. Achievements of modern radioelectronics. 2022. V. 76. № 8. P. 17–51. DOI: https://doi.org/ 10.18127/j20700784-202208-02 [in Russian]
  15. Patent US2011392A. Airplane altitude indicating system. Bentley J.O. Aug. 13, 1935.
  16. Patent US2045071A. Altimeter for aircraft. Espenschied L. June 23, 1936.
  17. Patent US4973967A. Radioaltimeter type of detector and a proximity fuse equipped with such a detector. David J., Crampagne R., Baricos J. Nov. 27, 1990.
  18. Patent US5266957A. Proximity fuze transceiver. Bosch D.M., Loughran S.J., Thomas S.M. Nov. 30, 1993.
  19. Patent DE3319767B3. Method for determining point of time, in which moving object obtains predetermined distance to object by return beam measurement object, involves modulating frequency of transmitter linearly in successive time intervals. Fischer L. March 31, 2011.
  20. Patent RU2708765C1. Radiovzryvatel' s lineynoy chastotnoy modulyatsiey signala. Kuznetsov N.S., Andryushin O.F., Ivantsov A.A., Malyshkin A.S., Shakhkel'dyan P.N. Opubl.: 11.12.2019. Byul. № 35. [in Russian]
  21. Armstrong B.M., Brown R., Rix F., Stewart J.A.C. Use of microstrip impedance-measurement technique in the design of a BARITT diplex Doppler sensor. IEEE Transaction of Microwave Theory and Technique. 1980. V. 28. № 12. P. 1437–1442. DOI: 10.1109/TMTT.1980.1130263.
  22. Varavin A.V., Vasiliev A.S., Ermak G.P., Popov I.V. Autodyne Gunn-diode transceiver with internal signal detection for short-range linear FM radar sensor. Telecommunication and Radio Engineering. 2010. V. 69. № 5. P. 451–458. DOI: 10.1615/TelecomRadEng.v69.i5.80.
  23. Zakarlyuk N.M., Noskov V.Ya., Smol'skiy S.M. Avtodinnye datchiki dlya zheleznodorozhnykh pereezdov. Trudy 20-y Mezhdunar. Krymskoy konf. «SVCh-tekhnika i telekommunikatsionnye tekhnologii» (KryMiKo’2010). Sevastopol'. 2010. S. 1072–1076. [in Russian]
  24. Ermak G.P., Popov I.V., Vasilev A.S., Varavin A.V., Noskov V.Ya., Ignatkov K.A. Radar sensors for hump yard and rail crossing applications. Telecommunication and Radio Engineering. 2012. V. 71. № 6. P. 567–580. DOI: 10.1615/TelecomRadEng.v71.i6.80.
  25. Jankiraman M. FMCW Radar Design. London: Artech House. 2018. ISBN-13: 978-1-63081-567-7.
  26. Atayants B.A., Davydochkin V.M., Ezerskiy V.V., Parshin V.S., Smol'skiy S.M. Pretsizionnye sistemy blizhney chastotnoy radiolokatsii promyshlennogo primeneniya. M.: Radiotekhnika. 2012. [in Russian]
  27. Kogan I.M. Blizhnyaya radiolokatsiya. Teoreticheskie osnovy. M.: Sov. Radio. 1973. [in Russian]
  28. Damgov V.N. Nonlinear and Parametric Phenomena. Theory and Applications in Radiophysical and Mechanical Systems. Copyright 2004 by World Scientific Publishing Co. Pte. Ltd.
  29. Kal'yanov E.V. Avtoparametricheskaya sistema s zapazdyvaniem. Zhurnal tekhnicheskoy fiziki. 2007. T. 77. № 8. S. 1–5. DOI: 10.1134/S1063784207080014. [in Russian]
  30. Landa P.S. Nonlinear Oscillations and Waves in Dynamical Systems. Springer-Science+ Business Media, B.V. 1996.
  31. Usanov D.A., Skripal' Al.V., Skripal' An.V. Fizika poluprovodnikovykh radiochastotnykh i opticheskikh avtodinov. Saratov: Izd–vo Saratovskogo un-ta, 2003. [in Russian]
  32. Noskov V.Ya., Ignatkov K.A., Chupahin A.P., Ermak G.P., Vasiliev A.S. Mathematical model of FM autodyne radar. 9-th International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter, and Submillimeter Waves (MSMW'16), (Kharkov, Ukraine, June 20-24, 2016). 2016. A-25. P. 1–4. DOI: 10.1109/MSMW.2016.7538000.
  33. Noskov V.Ya., Vasil'ev A.S., Ermak G.P., Ignatkov K.A., Chupakhin A.P. Fluktuatsionnye kharakteristiki avtodinnykh radiolokatorov s chastotnoy modulyatsiey. Izvestiya vuzov. Radioelektronika. 2017. T. 60. № 3. S. 154–165. DOI: 10.20535/S0021347017030049.
    [in Russian]
  34. Jefford P.A., Howes M.S. Modulation schemes in low-cost microwave field sensor. IEEE Transaction of Microwave Theory and Technique. 1985. V. 31. № 8. P. 613–624. DOI: 10.1109/TMTT.1983.1131559.
  35. Komarov I.V., Smolskiy S.M. Fundamentals of short-range FM radar. Norwood: Artech House. 2003. DOI: 10.1109/MAES.2004.1346903.
  36. Votoropin S.D., Noskov V.Ya., Smol'skiy S.M. Analiz avtodinnogo effekta generatorov s lineynoy chastotnoy modulyatsiey. Izvestiya vuzov. Fizika. 2008. T. 51. № 6. S. 610–618. DOI: 10.1007/s11182-008-9083-5. [in Russian]
  37. Noskov V.Y., Ignatkov K.A., Chupahin A.P., Vasiliev A.V., Ermak G.P., Smolskiy S.M. Peculiarities of signal formation of the autodyne short-range radar with linear frequency modulation. Visn. NTUU KPI, Ser. Radioteh. radioaparatobuduv. 2016. № 67. P. 50–57. DOI: 10.20535/RADAP.2016.67.50-57.
  38. Noskov V.Ya., Ignatkov K.A., Chupahin A.P., Vasiliev A.S., Ermak G.P., Smolskiy S.M. Signals of autodyne radars with frequency modulation according to symmetric saw-tooth law. Telecommunication and Radio Engineering. 2016. V. 75. № 17. P. 1551–1566. DOI: 10.1615/TelecomRadEng.v75.i17.40.
  39. Kryzhanovskyi V.S., Ermak G.P., Vasiliev A.S., Varavin A. V., Noskov V.Ya., Ignatkov K.A., Chupahin A.P., Smolskiy S.M. Signals from a moving object of autodyne radars with linear frequency modulation. IEEE Microwaves, Radar and Remote Sensing Symposium (MRRS). (August 29-31). Kyiv, Ukraine. 2017. P. 93–98. DOI: 10.1109/MRRS.2017.8075036.
  40. Ermak G.P., Vasiliev A.S., Noskov V.Ya., Ignatkov K.A. Moving object signal peculiarities of an autodyne radar with symmetric saw-tooth FM law. International Conference on Information and Telecommunication Technologies and Radio Electronics (UkrMiCo) (September 11-15, 2017), Odesa, Ukraine. 2017. P. 1–4. DOI: 10.1109/UkrMiCo.2017.8095378.
  41. Noskov V.Ya., Ignatkov K.A., Chupakhin A.P. Analiz signalov ot dvizhushchegosya ob"ekta avtodinnykh lokatorov s lineynymi vidami modulyatsii chastoty. Ural Radio Engineering Journal. 2017. T. 1. № 1. S. 25–54. DOI 10.15826/urej.2017.1.1.002. [in Russian]
  42. Noskov V.Ya., Ignatkov K.A., Chupahin A.P., Vasiliev A.S., Ermak G.P., Smolskiy S.M. Signals of autodyne sensors with sinusoidal frequency modulation. Radioengineering. 2017. V. 26. № 4. P. 1182–1190. DOI: 10.13164/re.2017.1182.
  43. Noskov V.Ya., Ignatkov K.A. O primenimosti kvazistaticheskogo metoda analiza avtodinnykh sistem. Izvestiya vuzov. Radioelektronika. 2014. T. 57. № 3. S. 44–56. [in Russian]
  44. Malakhov A.N. Fluktuatsii v avtokolebatel'nykh sistemakh. M.: Nauka. 1968. [in Russian]
  45. Kasatkin L.V., Chayka V.E. Poluprovodnikovye ustroystva diapazona millimetrovykh voln. Sevastopol': Veber. 2006. [in Russian]
  46. Noskov V.Ya., Ignatkov K.A., Chupahin A.P., Ermak G.P., Vasiliev A.S. Main expressions for analysis of signals and noise of autodyne FM radar. 9-th International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW'16), (Kharkov, Ukraine, June 20-24, 2016). 2016. A-9. P. 1–4. DOI: 10.1109/MSMW.2016.7538019.
  47. Noskov V.Ya., Ermak G.P., Vasil'ev A.S., Ignatkov K.A., Shaydurov K.D. Zavisimost' signal'nykh i shumovykh kharakteristik avtodinov s chastotnoy modulyatsiey ot rasstoyaniya do ob"ekta lokatsii. Izvestiya vuzov. Radioelektronika. 2021. T. 64. № 4. S. 247–260. https://doi.org/10.20535/S0021347021040051. [in Russian]
  48. Latkhi B.P. Sistemy peredachi informatsii. M.: Svyaz'. 1971. [in Russian]
  49. Noskov V.Ya., Ignatkov K.A. Osobennosti shumovykh kharakteristik avtodinov pri sil'noy vneshney obratnoy svyazi. Izvestiya vuzov. Fizika. 2013. T. 56. № 12. S. 112–124. [in Russian]
  50. Noskov V.Ya., Ignatkov K.A., Chupahin A.P., Ermak G.P., Vasiliev A.S. Peculiarities of signal and noise characteristics of FMCW autodyne radar. 9-th International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW'16), (Kharkov, Ukraine, June 20-24, 2016). 2016. A-10. P. 1–4. DOI: 10.1109/MSMW.2016.7537984.
  51. Noskov V.Ya., Ignatkov K.A., Shaidurov K.D., Ermak G.P., Vasiliev A.S. Features of noise characteristics of frequency-modulated autodyne radars. IEEE Ukrainian Microwave Week. Volume 2 on 2020 IEEE 6th Microwaves, Radar and Remote Sensing Symposium (MRRS-2020), (2020 IEEE Ukrainian Microwave Week Kharkiv, Ukraine, September 21–25). 2020. P. 245–248. DOI: 10.1109/UkrMW49653.2020.9252576.
  52. Noskov V.Ya., Bogatyrev E.V., Ignatkov K.A., Shaydurov K.D. Osobennosti formirovaniya i obrabotki signalov v avtodinnykh radiolokatorakh s chastotnoy modulyatsiey s uchetom nelineynosti modulyatsionnoy kharakteristiki. Ural Radio Engineering Journal. 2021. T. 5. № 2. S. 119–143. DOI: 10.15826/urej.2021.5.2.003. [in Russian]

 

Date of receipt: 27.06.2022
Approved after review: 20.07.2022
Accepted for publication: 30.08.2022