A.S. Bogachev1, V.I. Merkulov2, A.N. Savelyev3, I.R. Zagrebelnyi4
1,2,4 JSC Radio Engineering Corporation Vega (Moscow, Russia)
3 Bauman Moscow State Technical University (Moscow, Russia)
In recent publications devoted to the 6th generation fighters, the main focus is on discussing the principles and properties of aircraft of this generation. However, no less relevant are the concepts of building the architecture of the radio-electronic control system as a whole, which has the properties of openness, interoperability, scalability and extensibility, and the creation of a highly integrated information processing system, which should have:
a single broadband antenna system for all electronic systems (radar, state identification, electronic warfare, communications and navigation);
multispectral aperture of optoelectronic systems;
a multifunctional system of indication, display of information, management and control as part of the information and control field of the aircraft cabin.
At the same time, the onboard computing system will be made in the form of an integrated high-performance network architecture environment based on high-speed information transmission channels.
A further increase in the level and degree of integration into the 6th generation radio-electronic control systems is associated with the introduction of «smart cladding», the details of which are discussed in the article.
But, no matter what promising principles of construction are laid down in the radio-electronic control systems of fighters of the 6th generation, its perfection is always limited by the quality of the element base used. In this regard, the article pays attention to the features of the nanoelement base, which can be used in the radio-electronic control systems of fighters of the 6th generation.
Bogachev A.S., Merkulov V.I., Savelyev A.N., Zagrebelnyi I.R. Radio-electronic control systems of sixth generation fighters. Part 2. Architecture of the onboard complex. Features of integration and element base. Achievements of modern radioelectronics. 2022. V. 76. № 9. P. 5–14. DOI: https://doi.org/ 10.18127/j20700784-202209-01 [in Russian]
- Merkulov V.I., Savel'ev A.N. Radioelektronnye sistemy upravleniya istrebiteley shestogo pokoleniya. Ch. 1. Podkhody k razrabotke. Problemy optimizatsii. Uspekhi sovremennoy radioelektroniki. 2009. № 7. [in Russian]
- Antsev G.V., Sarychev V.A. Sistemy samonavedeniya vysokotochnogo oruzhiya. Tezaurus. M.: Radiotekhnika. 2020. [in Russian]
- Samarin O.F., Solov'ev A.A., Sharova T.V. Radiolokatsionnye sistemy mnogofunktsional'nykh samoletov. T. 3. Vychislitel'nye sistemy RLS mnogofunktsional'nykh samoletov. Pod red. A.I. Kanashchenkova i V.I. Merkulova. M.: Radiotekhnika, 2007. [in Russian]
- Yarlykov M.S., Bogachev A.S., Merkulov V.I., Drogalin V.V. Radioelektronnye kompleksy navigatsii, pritselivaniya i upravleniya vooruzheniem letatel'nykh apparatov. T. 1. Teoreticheskie osnovy. Pod red. M.S. Yarlykova. M.: Radiotekhnika. 2012. [in Russian]
- Gulyaev Yu.V., Zhuravlev E.E., Oleynikov A.Ya. Metodologiya standartizatsii dlya obespecheniya interoperabel'nosti informatsionnykh sistem shirokogo klassa. Analiticheskiy obzor. Zhurnal radioelektroniki. 2012. № 3. [in Russian]
- Oleynikov A.Ya., Makarenko S.I., Kozlov S.V. Interoperabel'nost' – klyuchevaya tekhnologiya povysheniya effektivnosti i sistem vooruzheniya, upravleniya i svyazi. Radioelektronnye tekhnologii. Informatsionno-analiticheskiy zhurnal. 2022. № 1. [in Russian]
- Sovremennoe sostoyanie i perspektivy razvitiya bespilotnykh aviatsionnykh sistem XXI veka (analiticheskiy obzor po materialam zarubezhnykh informatsionnykh istochnikov). Pod obshchey red. akademika RAN E.A. Fedosova. M.: GosNIIAS. 2012. [in Russian]
- Zatuliveter Yu.S., Semenov S.S. Novyy podkhod k sozdaniyu sistem setetsentricheskogo upravleniya. Fazotron. Informatsionno-analiticheskiy zhurnal. 2012. № 3 (19). [in Russian]
- Zheltov S.Yu., Fedoseev E.P. Tekhnologiya formirovaniya informatsionno-vychislitel'nykh sredstv sovremennoy aviatsii. Fazotron.
Informatsionno-analiticheskiy zhurnal. 2011. № 3,4 (16). [in Russian] - Popov A.A., Kotov A.V., Serikov A.P., Alokoz G.M., Kurak M.V. Vedenie v otkazoustoychivye tekhnologii vysokoproizvoditel'nykh vychislitel'nykh sistem (sub)mikronnogo, supramolekulyarnogo i nanometrovogo diapazona. Elektronnaya kniga. www.intuit.ru. 08.09.2012. [in Russian]
- Joint Advanced Strike Technology Program Avionics Architecture Definition. Version 1.0. 09.08.1994.
- Perspektivy razvitiya radiolokatsionnykh stantsiy. EI Aviastroenie. M.: VINITI. 2000. № 21. [in Russian]
- Chabanov V.A., Smirnova I.R. Evropeyskie istrebiteli budushchego. Radioelektronnye tekhnologii. Informatsionno-analiticheskiy zhurnal. 2020. № 1. [in Russian]
- Bortovye sistemy upravleniya boevymi rezhimami sovremennykh i perspektivnykh samoletov. Kn. 1: Analiticheskiy obzor po materialam zarubezhnykh informatsionnykh istochnikov. Pod obshchey red. akad. RAN E.A. Fedosova. M.: NITs GosNIIAS. 2009. [in Russian]
- Razrabotka «umnykh obshivok» dlya perspektivnykh letatel'nykh apparatov (Obzor). EI Aviastroenie. M.: VINITI. 1991. № 12. [in Russian]
- Aktivnye fazirovannye antennye reshetki. Pod red. D.I. Voskresenskogo i A.I. Kanashchenkova. M.: Radiotekhnika. 2004. [in Russian]
- Zaytsev D.F. Radioelektronnye sistemy budushchego. Ot ob"emnoy keramiki k nanofotonike. Fazotron. Informatsionno-analiticheskiy zhurnal. 2012. № 3 (19). [in Russian]
- Pikulev V.B., Loginova S.V. Nanofotonika. Ucheb. posobie. Petrozavodsk: Petr GU. 2012. [in Russian]
- Zaytsev D.F., Andreev V.M., Bilenko I.A. i dr. Pervaya radiofotonnaya fazirovannaya antennaya reshetka. Radiotekhnika. 2021. T. 85. № 4. S. 153–164. [in Russian]