350 rub
Journal Achievements of Modern Radioelectronics №8 for 2022 г.
Article in number:
Modern hybrid-integrated autodyne oscillators of microwave and mm-wave ranges and its applications. Part 14. Autodynes with amplitude-frequency modulation
Type of article: overview article
DOI: https://doi.org/10.18127/j20700784-202208-02
UDC: 621.373.122; 621.396.967
Authors:

V.Ya. Noskov1, E.V. Bogatyrev2, R.G. Galeev3, K.A. Ignatkov4, K.D. Shaidurov5

1,4,5 Ural Federal University (Ekaterinburg, Russia)

2 Siberian Federal University (Krasnoyarsk, Russia)

3 JSC «NPP «Radiosvyaz»; Department of Radiophysics and Special Electronic Equipment of the M.F. Reshetnev SibSU (Krasnoyarsk, Russia)

Abstract:

The simplest design, minimum dimensions, weight and cost of short-range radar systems (SRRSs) are provided by transceivers with an autodyne construction principle. In these SRRS, the functions of the transmitter and receiver are performed by a single cascade – an self-oscillator (just an autodyne – AD) connected directly to the antenna without any decoupling elements. The AD, which generates probing microwave oscillations and simultaneously receives a signal reflected from the target, is a single self-oscillating system «oscillator – target», in which the autodyne effect manifests itself, consisting in changes in the amplitude, frequency and phase of oscillations due to changes in the «external» parameters of the autodyne system: the distance to the target and the speed of its change. Therefore, AD belong to the class of auto-parametric systems with delayed feedback. An adequate description of all complex processes in such a system is possible only by methods of the theory of nonlinear oscillations.

The analysis of the processes of formation of signal characteristics of blood pressure with various types of modulation is particularly difficult. Among them, amplitude (AM) and frequency (FM) modulation of radiation are most widely used in SRRS. At the same time, it should be noted that when one of the types of modulation of microwave oscillators is carried out, another type of modulation is inevitably present. One of them is usually undesirable (parasitic), since it causes distortion of the signal characteristics due to the main type of modulation.

This review summarizes the results of studies of autodyne SRRS taking into account simultaneous AM and FM radiation. At the same time, a mathematical model of AD with AM and FM has been developed, which provides the possibility of calculating the characteristics of amplitude selection (CAS), the shape and spectrum of the autodyne signal for the general case of an arbitrary ratio of the delay time reflected from the radiation target and the period of the modulating function. The model is represented by a system of linearized in the vicinity of the stationary mode of an autonomous oscillator of differential equations with a lagging argument. These equations take into account the internal and external inertia of the autodyne system, due to the finite value of the rate of change of oscillation parameters of the oscillator and the finite time of propagation of probing radiation to the target and back, respectively.

The transition from general expressions to specific expressions is performed for the case of simultaneous AM and FM autodyne according to the law of harmonic function. At the same time, the case of a strong inequality is considered , when the main spectral components at the frequency of  an autodyne signal are grouped not only in the region of low «zero» frequencies, but also in the vicinity of the harmonics of the modulation frequency . Taking into account this inequality in the finite expressions describing the autodyne response, the decomposition of the delayed action functions into Taylor series is performed for a small delay time of the reflected radiation compared to the current observation time. This decomposition allowed us to move on to expressions in which all variables become explicit.

As a result of the interaction of probing and reflected radiation from the target in the AD with harmonic AM on the harmonics of the modulation frequency, including the zero harmonic, output signals are formed depending on the distance to the target in the form of periodic CAS targets. If in AM AD the magnitude of the concomitant deviation of the generation frequency is negligible, then the maximum of the autodyne response corresponds to the middle of the CAS. At the same time, the efficiency of transferring the signal received from the target to the harmonics of the modulation frequency decreases with increasing harmonic number. If there is a concomitant deviation of the generation frequency in AM AD, when it increases, the region of the main maximum of the CAS first shifts towards large values of the normalized distance, and in the future – the appearance of a multi-humped CAS, characteristic of FM SRRS. The efficiency of signal transfer to the higher harmonics of the modulation frequency in AM AD improves somewhat with an increase in the concomitant frequency deviation.

During the interaction of probing and reflected vibrations from the target in the self-oscillating system of an autodyne oscillator with harmonic FM on the harmonics of the modulation frequency, including the zero harmonic, the formation of periodic CAS of the targets occurs. If the values of the accompanying AM and the parameter of the external feedback of the autodyne system «oscillator – target» are negligible, then in FM AD, the formation of autodyne signals on the harmonics of the modulation frequency and in the vicinity of the zero harmonic occurs in accordance with the Bessel functions, similar to the formation of signals in homodyne FM SRRSs. The presence of concomitant (parasitic) AM radiation of FM AD makes changes in the amplitude and phase ratios of signals that cause deviations of the generated CAS of the target from the type of Bessel functions. At the same time, both in the presence of concomitant AM and in its absence at the edges of the CAS at the output of the FM AD, signals from the target are observed only at the zero harmonic modulation, i.e. in the Doppler frequency range. The influence of concomitant AM on the formation of CAS in autodyne FM SRRS decreases significantly with an increase in the harmonic number of the modulation frequency.

Amplitude modulation in autodyne SRRS, both in the case of its deliberate use in AM SRRS, and in the case of FM SRRS, when AM is parasitic and undesirable, the amplitude values of signals in the middle part of the CAS at all harmonics of the modulation frequency, including the zero harmonic, increase asymptotically with the approach of the AM coefficient to unity. The spectrum of the signal of the autodyne SRRS with simultaneous AM and FM on the harmonics of the modulation frequency has an asymmetric appearance. If the value of the parameter of the external feedback of the autodyne system «oscillator – target» is commensurate with one, then the signals of AD with AM and/or FM from a point reflector moving uniformly and rectilinearly have anharmonic distortions.

When creating promising autodyne transceiver modules for FM SRRS, it is necessary to take into account the noted features. First of all, measures should be taken to reduce the level of concomitant AM and the causes of signal distortion due to autodyne frequency changes. In addition, autodyne modules must provide the required linearity of the FM law in a wide band and repeatability of modulation characteristics in mass production conditions.

Experimental data obtained on the example of hybrid-integral oscillator modules «Tigel-08» confirmed the results of theoretical studies and the adequacy of the developed models of autodyne SRRS with AM and FM. An additional confirmation of the validity of the developed model of autodyne SRRS with AM and FM is the successful operation of a number

Pages: 17-52
For citation

Noskov V.Ya., Bogatyrev E.V., Galeev R.G., Ignatkov K.A., Shaidurov K.D.  Modern hybrid-integrated autodyne oscillators of microwave and mm-wave ranges and its applications. Part 14. Autodynes with amplitude-frequency modulation. Achievements of modern radioelectronics. 2022. V. 76. № 8. P. 17–51. DOI: https://doi.org/ 10.18127/j20700784-202208-02 [in Russian]

References
  1. Votoropin S.D., Noskov V.Ya., Smol'skij S.M. Sovremennye gibridno-integral'nye avtodinnye generatory mikrovolnovogo i millimetrovogo diapazonov i ih primenenie. Ch. 1. Konstruktorsko-tehnologicheskie dostizheniya. Uspehi sovremennoj radioelektroniki. 2006. № 12. S.3–30. [in Russian]
  2. Votoropin S.D., Noskov V.Ya., Smol'skij S.M. Sovremennye gibridno-integral'nye avtodinnye generatory mikrovolnovogo i millimetrovogo diapazonov i ih primenenie. Ch. 2. Teoreticheskie i eksperimental'nye issledovaniya. Uspehi sovremennoj radioelektroniki. 2007. № 7. S. 3–33. [in Russian]
  3. Votoropin S.D., Noskov V.Ya., Smol'skij S.M. Sovremennye gibridno-integral'nye avtodinnye generatory mikrovolnovogo i millimetrovogo diapazonov i ih primenenie. Ch. 3. Funkcional'nye osobennosti avtodinov. Uspehi sovremennoj radioelektroniki. 2007. № 11. S. 25–49. [in Russian]
  4. Votoropin S.D., Noskov V.Ya., Smol'skij S.M. Sovremennye gibridno-integral'nye avtodinnye generatory mikrovolnovogo i millimetrovogo diapazonov i ih primenenie. Ch. 4. Issledovaniya mnogochastotnyh avtodinov. Uspehi sovremennoj radioelektroniki. 2008. № 5. S. 65–88. [in Russian]
  5. Votoropin S.D., Noskov V.Ya., Smol'skij S.M. Sovremennye gibridno-integral'nye avtodinnye generatory mikrovolnovogo i millimetrovogo diapazonov i ih primenenie. Ch. 5. Issledovaniya avtodinov s chastotnoj modulyaciej. Uspehi sovremennoj radioelektroniki. 2009. № 3. S. 3–50. [in Russian]
  6. Noskov V.Ya., Smol'skij S.M. Sovremennye gibridno-integral'nye avtodinnye generatory mikrovolnovogo i millimetrovogo diapazonov i ih primenenie. Ch. 6. Issledovaniya radioimpul'snyh avtodinov. Uspehi sovremennoj radioelektroniki. 2009. № 6. S. 3–51. [in Russian]
  7. Noskov V.Ya., Ignatkov K.A., Smol'skij S.M. Sovremennye gibridno-integral'nye avtodinnye generatory mikrovolnovogo i millimetrovogo diapazonov i ih primenenie. Ch. 7. Dinamika formirovaniya avtodinnyh i modulyacionnyh harakteristik. Uspehi sovremennoj radioelektroniki. 2013. № 6. S. 3–52. [in Russian]
  8. Noskov V.Ya., Ignatkov K.A., Smol'skij S.M. Sovremennye gibridno-integral'nye avtodinnye generatory mikrovolnovogo i millimetrovogo diapazonov i ih primenenie. Ch. 8. Avtodiny so stabilizaciej chastoty vneshnim vysokodobrotnym rezonatorom. Uspehi sovremennoj radioelektroniki. 2013. № 12. S. 3–42. [in Russian]
  9. Noskov V.Ya., Varavin A.V., Vasil'ev A.C., Ermak G.P., Zakarlyuk N.M., Ignatkov K.A., Smol'skij S.M. Sovremennye gibridno-integral'nye avtodinnye generatory mikrovolnovogo i millimetrovogo diapazonov i ih primenenie. Ch. 9. Radiolokacionnoe primenenie avtodinov. Uspehi sovremennoj radioelektroniki. 2016. № 3. S. 32–86. [in Russian]
  10. Noskov V.Ya., Smol'skij S.M., Ignatkov K.A., Mishin D.Ya., Chupahin A.P. Sovremennye gibridno-integral'nye avtodinnye generatory mikrovolnovogo i millimetrovogo diapazonov i ih primenenie. Ch. 10. Osnovy analiza i rascheta parametrov avtodinov s uchetom shumov. Uspehi sovremennoj radioelektroniki. 2018. № 3. S. 18–52. [in Russian]
  11. Noskov V.Ya., Smol'skij S.M., Ignatkov K.A., Mishin D.Ya., Chupahin A.P. Sovremennye gibridno-integral'nye avtodinnye generatory mikrovolnovogo i millimetrovogo diapazonov i ih primenenie. Ch. 11. Osnovy realizacii avtodinov. Uspehi sovremennoj radioelektroniki. 2019. № 2. S. 5–33. DOI: 10.18127/j20700784-201902-01. [in Russian]
  12. Noskov V.Ya., Smol'skij S.M., Ignatkov K.A., Chupahin A.P. Sovremennye gibridno-integral'nye avtodinnye generatory mikrovolnovogo i millimetrovogo diapazonov i ih primenenie. Ch. 12. Signaly odnokonturnyh avtodinov pri sil'nom otrazhennom izluchenii. Uspehi sovremennoj radioelektroniki. 2019. № 5. S. 5–19. DOI: 10.18127/j20700784-201905-01. [in Russian]
  13. Noskov V.Ya., Smol'skiy S.M., Ignatkov K.A., Chupakhin A.P. Sovremennye gibridno-integral'nye avtodinnye generatory mikrovolnovogo i millimetrovogo diapazonov i ikh primenenie. Ch. 13. Stabilizirovannye vneshnim rezonatorom avtodiny pri sil'nom otrazhennom izluchenii. Uspekhi sovremennoy radioelektroniki. 2020. № 1. S. 5–21. DOI 10.18127/j20700784-202001-01. [in Russian]
  14. Page C.H., Astin A.V. Survey of proximity fuze development. American Journal of Physics. 1947. V. 15. № 2. P. 95–110. DOI: 10.1119/1.1990930.
  15. Noskov V.Ya. Istoriya zarozhdeniya i razvitiya avtodinnykh radiovzryvateley. 23-ya Mezhdunar. Krymskaya konf. «SVCh-tekhnika i telekommunikatsionnye tekhnologii» (KryMiKo’2013). Sevastopol'. 2013. S. 26–29. [in Russian]
  16. Kogan I.M. Blizhnyaya radiolokatsiya. Teoreticheskie osnovy. M.: Sov. radio. 1973. [in Russian]
  17. Nagano S., Akaiwa Y. Behavior of Gunn diode oscillator with a moving reflector as a self-excited mixer and a load variation detector. IEEE Transactions on Microwave Theory and Techniques. 1971. V. 19. № 12. P. 906–910. DOI: 10.1109/TMTT.1971.6373339.
  18. Takayama Y. Doppler signal detection with negative resistance diode oscillators. IEEE Trans. IEEE Transactions on Microwave Theory and Techniques. 1973. V. 21. № 2. P. 89–94. DOI: 10.1109/TMTT.1973.1127929.
  19. Gupta M-S., Lomax R.J., Haddad G.I. Noise consideration in self-mixing IMPATT-diode oscillators for short-range Doppler radar applications. IEEE Transactions on Microwave Theory and Techniques. 1974. V. 22. № 1. P. 37–43. DOI: 10.1109/TMTT.1974.1128158.
  20. Nygren T., Sjolund A. Sensitivity of Doppler radar with self-detecting diode oscillators. IEEE Transactions on Microwave Theory and Techniques. 1974. V. 22. № 5. P. 494–498. DOI: 10.1109/TMTT.1974.1128268
  21. Kotani M., Mitsui S., Shirahata K. Load-variation detector characteristics of a detector-diode loaded Gunn oscillator. Electronics and Communications in Japan. 1975. V. 58-B. № 5. P. 60–66.
  22. Somekh M.G., Richmond W., Moroz J., Lazarus M.T. Development of pulsed self-oscilating mixer. Electronics Letters. 1980. V. 16. № 15. P. 597–599. DOI: 10.1049/el:19800414.
  23. Khotuntsev Yu.L., Tamarchak D.Ya. Sinkhronizirovannye generatory i avtodiny na poluprovodnikovykh priborakh. M.: Radio i svyaz'. 1982. [in Russian]
  24. Bogachev V.M., Lysenko V.G., Smol'skiy S.M. Tranzistornye generatory i avtodiny. M.: MEI. 1993. [in Russian]
  25. Komarov I.V., Smolskiy S.M. Fundamentals of Short-Range FM Radar. Artech House, Norwood, MA, USA. 2003.
  26. Usanov D.A., Skripal' Al.V., Skripol' An.V. Fizika poluprovodnikovykh radiochastotnykh i opticheskikh avtodinov. Saratov: Izd-vo Saratovskogo un-ta. 2003. [in Russian]
  27. Kantor A.V. Apparatura i metody izmereniy pri ispytaniyakh raket. M.: Oborongiz. 1963. [in Russian]
  28. Lushev V.P., Votoropin S.D., Deryabin Yu.N., Zhurinov Yu.B., Potapov M.G. Avtodinnye SVCh datchiki peremeshcheniya dlya izmereniya skorosti goreniya vysokoenergeticheskikh kompozitsionnykh materialov. 15-ya Mezhdunar. Krymskaya konf. «SVCh-tekhnika i telekommunikatsionnye tekhnologii» (KryMiKo’2005). Sevastopol'. 2005. S. 831–833. [in Russian]
  29. Alidoost S.A., Sadeghzade R., Fatemi R. Autodyne System with a Single Antenna. 11th International Radar Symposium (IRS-2010). Vilnius, Lithuania. 2010. V. 2. P. 406–409.
  30. Noskov V.Ya., Bogatyrev E.V., Ignatkov K.A. Printsip postroeniya bortovogo radiolokatsionnogo datchika dlya obnaruzheniya bystrodvizhushchikhsya tseley. Uspekhi sovremennoy radioelektroniki. 2019. № 12. S. 16–22. DOI: 10.18127/j20700784-201912-03. [in Russian]
  31. Gershenzon E.M., Tumanov B.N., Buzykin V.T., Kalygina V.M., Levit B.I. Obshchie kharakteristiki i osobennosti avtodinnogo effekta v avtogeneratorakh. Radiotekhnika i elektronika. 1982. V. 27. № 1. P. 104–112. [in Russian]
  32. Armstrong B.M., Brown R., Rix F., Stewart J.A.C. Use of microstrip impedance-measurement technique in the design of a BARITT diplex Doppler sensor. IEEE Transactions on Microwave Theory and Techniques. 1980. V. 28. № 12. P. 1437–1442. DOI: 10.1109/TMTT.1980.1130263.
  33. Efanov A.A., Diskus C.G., Stelzer A., Thim H.W., Lubke K., Springer A.L. Development of a low-cost 35 GHz radar sensor. Annals of Telecommunications. 1997. V. 52. № 3. P. 219–223. DOI: 10.1007/BF02996047.
  34. Zakarlyuk N.M., Noskov V.Ya., Smol'skiy S.M. Avtodinnye datchiki dlya zheleznodorozhnykh pereezdov. 20-ya Mezhdunar. Krymskaya konf. «SVCh-tekhnika i telekommunikatsionnye tekhnologii» (KryMiKo’2010). Sevastopol'. 2010. S. 1072–1076. [in Russian]
  35. Ermak G.P., Popov I.V., Vasiliev A.S., Varavin A.V., Noskov V.Ya., Ignatkov K.A. Radar sensors for hump yard and rail crossing applications. Telecommunication and Radio Engineering. 2012. V. 71. № 6. P. 567–580. DOI: 10.1615/TelecomRadEng.v71.i6.80.
  36. Zakarlyuk N.M., Noskov V.Ya., Smol'skiy S.M. Bortovye avtodinnye datchiki skorosti dlya aeroballisticheskikh ispytaniy. 20-ya Mezhdunar. Krymskaya konf. «SVCh-tekhnika i telekommunikatsionnye tekhnologii» (KryMiKo’2010). Sevastopol'. 2010. S. 1065–1068. [in Russian]
  37. Noskov V.Ya. Avtodinnaya radioblokirovka 8-mm diapazona dlya provedeniya ballisticheskikh ispytaniy. 23-ya Mezhdunar. Krymskaya konf. «SVCh-tekhnika i telekommunikatsionnye tekhnologii» (KryMiKo’2013). Sevastopol'. 2013. S. 1041. [in Russian]
  38. Noskov V.Ya. Avtodinnaya sistema dlya opredeleniya skorosti izdeliy c traektoriey vblizi poverkhnosti zemli. 24-ya Mezh-dunar. Krymskaya konf. «SVCh-tekhnika i telekommunikatsionnye tekhnologii» (KryMiKo’2014). Sevastopol'. 2014. S. 1031–1032. [in Russian]
  39. Noskov V.Ya. Avtodinnyy datchik dlya kontrolya vnutrennikh razmerov metallicheskikh izdeliy. 25-ya Mezhdunar. Krymskaya konf. «SVCh-tekhnika i telekommunikatsionnye tekhnologii» (KryMiKo’2015). Sevastopol'. 2015. S. 973–974. [in Russian]
  40. Noskov V.Ya., Ignatkov K.A., Chupakhin A.P. Primenenie dvukhdiodnykh avtodinov v ustroystvakh radiovolnovogo kontrolya razmerov izdeliy. Izmeritel'naya tekhnika. 2016. № 7. S. 24–28. [in Russian]
  41. Noskov V.Ya., Ignatkov K.A., Chupakhin A.P. Dvukhdiodnyy avtodinnyy datchik vnutrennikh razmerov metallicheskikh izdeliy. 28-ya Mezhdunar. Krymskaya konf. «SVCh-tekhnika i telekommunikatsionnye tekhnologii» (KryMiKo’2018). Moskva; Minsk; Sevastopol'. 2018. T. 6. S. 1436–1442. [in Russian]
  42. Viktorov V.A., Lunkin B.V., Sovlukov A.S. Radiovolnovye izmereniya parametrov tekhnologicheskikh protsessov. M.: Energoatomizdat. 1989. [in Russian]
  43. Usanov D.A., Tupikin V.D., Skripal' A.V., Kopotin B.N. Ispol'zovanie effekta avtodinnogo detektirovaniya v poluprovodnikovykh SVCh generatorakh dlya sozdaniya ustroystv radiovolnovogo kontrolya. Defektoskopiya. 1995. № 5. S. 16–20. [in Russian]
  44. Usanov D.A. Blizhnepolevaya skaniruyushchaya SVCh-mikroskopiya i oblasti ee primeneniya. Saratov: Izd-vo Sarat. un-ta. 2010. [in Russian]
  45. Usanov D.A., Skripal' Al.V., Abramov A.V., Bogolyubov A.S., Korotin B.N., Feklistov V.B., Ponomarev D.V., Frolov A.P. Blizhnepolevaya SVCh-mikroskopiya nanometrovykh sloev metalla na dielektricheskikh podlozhkakh. Izvestiya vuzov. Elektronika. 2011. № 5 (91). S. 83–90. [in Russian]
  46. Lazarus M.J., Pantoja F.P., Somekh M., Novak S., Margison S. New direction-of-motion Doppler detector. Electronics Letters. 1980. V. 16. № 25. P. 953–954. DOI: 10.1049/el:19800679.
  47. Yasuda A., Kuwashima S., Kanai Y. A ship borne-type wave-height meter for oceangoing vessels, using microwave Doppler radar. IEEE Journal of Oceanic Engineering. 1985. V. 10. № 2. P. 138–143. DOI: 10.1109/JOE.1985.1145094.
  48. Kim S., Nguyen C.A. Displacement measurement technique using millimeter-wave interferometry. IEEE Transaction on Microwave Theory and Techniques. 2003. V. 51. № 6. P. 1724–1728. DOI: 10.1109/TMTT.2003.81.812575.
  49. Usanov D.A., Skripal' Al.V., Skripal' An.V., Postel'ga A.E. Sverkhvysokochastotnyy avtodinnyy izmeritel' parametrov vibratsiy. Pribory i tekhnika eksperimenta. 2004. № 5. S. 1–5. [in Russian]
  50. Noskov V.Ya., Ignatkov K.A., Chupakhin A.P. Dvukhdiodnyy avtodin v sistemakh radiovolnovogo kontrolya dinamicheskikh protsessov. Datchiki i sistemy. 2016. № 6 (204). S. 31–37. [in Russian]
  51. Chernyavskiy A.Zh., Danilin S.A., Vorokh D.A., Danilin A.I. Primenenie pervichnykh avtodinnykh SVCh preobrazovateley dlya diagnostirovaniya ustanovok i oborudovaniya energeticheskogo i transportnogo mashinostroeniya. Datchiki i sistemy. 2021. № 3. S. 23–36. [in Russian]
  52. Mirsaitov F.N., Safonova E.V., Boloznev V.V. Microwave autodyne vibrosensor in aeroengine diagnostics. European Frequency and Time Forum (EFTF). 2014. P. 140–143. DOI: 10.1109/EFTF.2014.7331447.
  53. Usanov D.A., Skripal' Al.V., Skripal' An.V., Abramov A.V., Bogolyubov A.S., Postel'ga A.E. Radiovolnovaya interferometriya dvizheniy tela cheloveka, svyazannykh s dykhaniem i serdtsebieniem. Biomeditsinskie tekhnologii i radioelektronika. 2005. № 11–12. S. 44–51. [in Russian]
  54. Usanov D.A., Postelga A.E. Reconstruction of complicated movement of part of the human body using radio wave autodyne signal. Biomedical Engineering. 2011. V. 45. № 1. P. 6–8. DOI: 10.1007/s10527-011-9198-9.
  55. Kim S., Kim B.-H., Yook J.-G., Yun G.-H. Proximity vital sign sensor using self-oscillating mixer. URSI Asia-Pacific Radio Science Conference (URSI AP-RASC). 2016. P. 1446–1448. DOI: 10.1109/URSIAP-RASC.2016.7601402.
  56. Vetrova Yu.V., Doroshenko A.A., Postel'ga A.E., Usanov D.A. Distantsionnyy kontrol' dvizheniya poverkhnosti ob"ekta s ispol'zovaniem dvukhkanal'nogo SVCh-avtodinnogo generatora. Radiotekhnika i elektronika. 2019. T. 64. № 4. S. 387–395. [in Russian]
  57. Landa P.S. Nonlinear Oscillations and Waves in Dynamical Systems. Springer-Science+ Business Media, B.V. 1996.
  58. Damgov V.N. Nelineyni i parametrichni yavleniya v radiofizicheski sistemi. Sofiya: Akademichno izdatel'stvo «Prof. M. Drinov». 2000. [in Russian]
  59. Kal'yanov E.V. Avtoparametricheskaya sistema s zapazdyvaniem. Zhurnal tekhnicheskoy fiziki. 2007. T. 77. № 8. S. 1–5. DOI: 10.1134/S1063784207080014. [in Russian]
  60. Jefford. P.A., Howes M.S. Modulation schemes in low-cost microwave field sensor. IEEE Transactions on Microwave Theory and Techniques. 1985. V. 31. № 8. P. 613–624. DOI: 10.1109/TMTT.1983.1131559.
  61. Varavin A.V., Vasiliev A.S., Ermak G.P., Popov I.V. Autodyne Gunn-diode transceiver with internal signal detection for short-range linear FM radar sensor. Telecommunication and Radio Engineering. 2010. V. 69. № 5. P. 451–458. DOI: 10.1615/TelecomRadEng.v69.i5.80.
  62. Noskov V.Ya., Smol'skiy S.M. Avtodinnyy effekt v generatorakh s amplitudnoy modulyatsiey. Radiotekhnika. 2011. № 2. S. 21–36. http://radiotec.ru/article/8545. [in Russian]
  63. Noskov V.Ya., Smol'skiy S.M., Ignatkov K.A. Vliyanie soputstvuyushchey modulyatsii chastoty kolebaniy amplitudno-modulirovannogo generatora na formirovanie avtodinnykh signalov. Ural Radio Engineering Journal. 2020. T. 4. № 1. S. 51–83. DOI: 10.15826/urej.2020.4.1.004. [in Russian]
  64. Noskov V.Ya., Bogatyrev E.V., Ignatkov K.A., Shaydurov K.D. Vliyanie soputstvuyushchey amplitudnoy modulyatsii na formi-rovanie signalov avtodinnykh radiolokatorov s chastotnoy modulyatsiey. Ural Radio Engineering Journal. 2020. T. 4. № 2. S. 127–166. DOI: 10.15826/urej.2020.4.2.001. [in Russian]
  65. Noskov V.Ya., Ignatkov K.A., Shaydurov K.D. Matematicheskaya model' avtodina s kombinirovannoy amplitudno-chastotnoy modulyatsiey izlucheniya. 30-ya Mezhdunar. Krymskaya konf. «SVCh-tekhnika i telekommunikatsionnye tekhnologii» (KryMi-Ko’2020).
    Sevastopol': SevGU. 2020. S. 384–385. [in Russian]
  66. Noskov V.Ya., Smol'skiy S.M., Ignatkov K.A., Shaydurov K.D. Raschet avtodinnogo otklika amplitudno-modulirovannogo SVCh generatora pri nalichii chastotnoy modulyatsii izlucheniya. 30-ya Mezhdunar. Krymskaya konf. «SVCh-tekhnika i tele-kommunikatsionnye tekhnologii» (KryMiKo’2020). Sevastopol': SevGU. 2020. S. 386–387. [in Russian]
  67. Noskov V.Ya., Smol'skiy S.M., Ignatkov K.A., Shaydurov K.D. Otklik avtodina s chastotnoy modulyatsiey pri nalichii parazitnykh izmeneniy amplitudy kolebaniy. 30-ya Mezhdunar. Krymskaya konf. «SVCh-tekhnika i telekommunikatsionnye tekhnologii» (KryMiKo’2020). Sevastopol': SevGU. 2020. S. 388–389. [in Russian]
  68. Noskov V.Ya., Ignatkov K.A., Shaydurov K.D. Rezul'taty eksperimental'nykh issledovaniy avtodina na diode Ganna s amplitudno-chastotnoy modulyatsiey. 30-ya Mezhdunar. Krymskaya konf. «SVCh-tekhnika i telekommunikatsionnye tekhnologii» (KryMiKo’2020). Sevastopol': SevGU. 2020. S. 390–391. [in Russian]
  69. Noskov V.Ya., Ignatkov K.A., Shaidurov K.D., Ermak G.P., Bogatyrev E.V. Influence of accompanying AM on the formation of signals from autodyne short-range sensors with FM. Telecommunication and Radio Engineering. 2020. V. 79. № 16. P. 1397–1424. DOI: 10.1615/TelecomRadEng.v79.i16.10.
  70. Noskov V.Ya., Galeev R.G., Bogatyrev E.V., Ignatkov K.A., Shaidurov K.D. Autodyne sensor signals with amplitude-frequency modulation of radiation. Sensors. 2020. V. 20(24). № 7077. 18 p. DOI: 10.3390/s20247077.
  71. Ostapenkov P.S. Radiosignaly s kombinirovannoy chastotno-amplitudnoy modulyatsiey dlya bystrodeystvuyushchikh radio-tekhnicheskikh ustroystv: dis. … kand. tekhn. nauk: 05.12.04. Moskva. 2006. [in Russian]
  72. Noskov V.Ya., Ignatkov K.A., Chupahin A.P., Vasiliev A.S., Ermak G.P., Smolskiy S.M. Signals of autodyne sensors with sinusoidal frequency modulation. Radioengineering, 2017. V. 26. № 4. P. 1182–1190. DOI: 10.13164/re.2017.1182.
  73. Smol'skiy S.M., Solov'ev M.A. Malosignal'naya teoriya tranzistornogo avtodina s chastotnoy modulyatsiey. Radioperedayushchie i radiopriemnye ustroystva. Trudy MEI. 1977. V. 317. S. 12–14. [in Russian]
  74. Zakarlyuk N.M. Spektr avtodinnogo otklika generatora s chastotnoy modulyatsiey. Primenenie radiovoln millimetrovogo i submillimetrovogo diapazonov. Khar'kov: IRE AN Ukrainy. 1991. S. 56–65. [in Russian]
  75. Pat. US2424263. Radio system for distance and velocity measurement. Woodyard J.R. filed Feb. 23, 1943.
  76. Sharov Yu.V., Kislov O.A. Ob odnom sposobe izmereniya malykh dal'nostey. Radiopriemnye ustroystva. M.: Trudy MEI. 1972. V. 110. S. 63–67. [in Russian]
  77. Razgonyaev Yu.V. Ob opredelenii rasstoyaniya do dvizhushchegosya ob"ekta retsirkulyatsionnym metodom. Metody i ustroystva formirovaniya i obrabotki signalov. M.: Trudy MEI. 1979. V. 418. S. 21–24. [in Russian]
  78. Noskov V.Ya., Ignatkov K.A., Smol'skiy S.M. Zavisimost' avtodinnykh kharakteristik ot vnutrennikh parametrov SVCh generatorov.
    Radiotekhnika. 2012. № 6. S. 24–46. [in Russian]

 

Date of receipt: 27.06.2022
Approved after review: 20.07.2022
Accepted for publication: 30.07.2022