Tran Huu Nghi1, A.S. Podstrigaev2, Nguyen Trong Nhan3
1-3 Saint Petersburg Electrotechnical University «LETI» (Saint Petersburg, Russia)
Simple pulse signals, up-chirp signals, down-chirp signals, phase-manipulated signals with binary and quadrature laws of phase sequence are widely used in radio information transmission systems, radiolocation and radio navigation. With the increasing need to transmit increasing amounts of information, interest in such signals has increased significantly, and the problem of creating an algorithm capable of detecting and classifying these signals is becoming increasingly urgent. Therefore, the study aims to justify and study the classification algorithm simple pulse signals, up-chirp signals, down-chirp signals, phase shifted signals with binary and quadrature laws of phase sequence with reduced signal to noise ratio. Dependences of probability of correct classification of enumerated signals in the background of white Gaussian noise on a signal-to-noise ratio by imitational modeling method for developed algorithm are obtained. Conclusions about the value of input signal-to-noise ratio that is necessary for correct classification of signals of different types are made. It is shown that the suggested algorithm permits the input signal-to-noise ratio to be smaller by up to 5…9 dB in comparison with the known algorithms for the classification of the above signals. In addition, the proposed algorithm provides high efficiency at signal-to-noise ratio more than –1 dB. The results obtained one can use to assess the sensitivity of the receiving equipment for RF spectrum monitoring.
Tran Huu Nghi, Podstrigaev A.S., Nguyen Trong Nhan Signal classification algorithm with detection at two intermediate frequencies for RF spectrum monitoring means. Achievements of modern radioelectronics. 2022. V. 76. № 7. P. 30–39. DOI: https://doi.org/10.18127/j20700784-202207-03 [in Russian]
- Bulygin M.L., Mullov K.D. Formirovatel' zondiruyushchego signala dlya radiolokatora s sintezirovannoy aperturoy. Trudy MAI. 2015. № 80. URL: http://trudymai.ru/published.php?ID=57040. [in Russian]
- Levanon N., Mozeson E. Radar signals. John Wiley & Sons. 2004.
- Likhachev V.P., Nguen Kh.F. Opredelenie koordinat istochnika radioizlucheniya lineyno-chastotno-modulirovannykh signalov odnopozitsionnym raznostno-dal'nomernym sposobom. Uspekhi sovremennoy radioelektroniki. 2022. T. 76. № 1. S. 59–68. DOI: https://doi.org/10.18127/j20700784-202201-05. [in Russian]
- Nikolaev D., Chetiy V., Dudkin V., Davydov V. Determining the location of an object during environmental monitoring in conditions of limited possibilities for the use of satellite positioning. IOP Conference Series: Earth and Environmental Science. Saint Petersburg. 2020. P. 012052. DOI: 10.1088/1755-1315/578/1/012052
- Borisov O.A., Veselkov A.A., Likhachev V.P. Model' protsessa obrabotki LChM signalov avtokorrelyatsionnym priemnikom s summarnym i raznostnym kanalami obrabotki. Informatika: problemy, metodologiya, tekhnologii: materialy XVII Mezhdunar. nauch.-metodich. konf. Voronezh. 2017. S. 110–114. [in Russian]
- Likhachev V.P., Veselkov A.A., Semenov V.V. Rezul'taty eksperimental'noy proverki algoritma obnaruzheniya i opredeleniya parametrov shirokopolosnykh signalov RLS. Informatika: problemy, metodologiya, tekhnologii: materialy XVI Mezhdunar. nauch.-metodich. konf. Voronezh. 2016. S. 170–175. [in Russian]
- Podstrigaev A.S., Smolyakov A.V., Davydov V.V., Myazin N.S., Slobodyan M.G. Features of the Development of Transceivers for Information and Communication Systems Considering the Distribution of Radar Operating Frequencies in the Frequency Range. Lecture Notes in Computer Science. 2018. V. 11118. P. 509–515. DOI:10.1007/978-3-030-01168-0_45
- Podstrigaev A.S., Smolyakov A.V., Slobodyan M.G. Analiz plotnosti raspredeleniya tipov RLS v chastotnom diapazone. Zhurnal radioelektroniki. 2016. № 7. S. 1. [in Russian]
- Podstrigaev A.S., Smolyakov A.V., Maslov I.V. Probability of Pulse Overlap as a Quantitative Indicator of Signal Environment Complexity. Izvestiya vysshikh uchebnykh zavedeniy Rossii. Radioelektronika. 2020. № 23(5). S. 37–45. DOI: 10.32603/19938985-2020-23-5-37-45
- Zavadskiy A.L., Kazak P.A., Kadantsev S.M. Identifikatsiya vida modulyatsii fazomanipulirovannykh signalov na osnove analiza struktury spektra chetnykh stepeney. Tsifrovaya obrabotka signalov. 2019. № 1. S. 20–25. [in Russian]
- Nguen Ch.N., Podstrigaev A.C., Leonov I.E. Matematicheskaya model' algoritma raspoznavaniya tipa modulyatsii signala v avtokorrelyatsionnom priemnike sredstv radiotekhnicheskogo monitoringa. Trudy MAI. 2020. № 113. URL: http://trudymai.ru/published.php?ID=118147. [in Russian]
- Mossad O.S., ElNainay M., Torki M. Deep convolutional neural network with multi-task learning scheme for modulations recognition. 15th International Wireless Communications & Mobile Computing Conference (IWCMC). 2019. P. 1644–1649.
- Nikitin N.S., Darovskikh S.N. Sintez algoritma identifikatsii signalov s lineynoy chastotnoy modulyatsiey. Vestnik UrFO. Bezopasnost' v informatsionnoy sfere. 2019. № 3 (33). S. 12–19. [in Russian]
- Kanatchikov A.A. Sravnitel'nyy analiz metodov obnaruzheniya i opredeleniya parametrov zondiruyushchikh signalov RSA kosmicheskogo bazirovaniya. Zhurnal radioelektroniki. 2020. № 7. S. 1. [in Russian]
- Yu D., Shaoying S. LFM signal detection based on STFT and frequency-domain GOSBOS-CFAR in low SNR. 2013 IEEE International Conference of IEEE Region 10 (TENCON 2013). 2013. P. 1–4.
- Kubankova A. Design and analysis of new digital modulation classification method. WSEAS Transactions on Communications. 2009. V. 8(7). P. 628–637.
- Tsui J.B.Y. Special design topics in digital wideband receivers. Artech House. 2010.
- Layons R. Tsifrovaya obrabotka signalov. M.: Izdatel'stvo BINOM. 2006. [in Russian]
- Ponomareva N.V., Ponomareva V.Yu. Lokalizatsiya spektral'nykh pikov metodom parametricheskogo diskretnogo preobrazovaniya Fur'e. Intellektual'nye sistemy v proizvodstve. 2016. № 2. S. 15–18. [in Russian]
- Miller S.J. The Probability Lifesaver. Princeton University Press. 2017.
- Muraliev A.M., Alymbaeva B.S. Lineynaya approksimatsiya empiricheskikh dannykh metodom naimen'shikh kvadratov. Vestnik KGUSTA. 2011. T. 2. № 2. S. 162–167. [in Russian]