350 rub
Journal Achievements of Modern Radioelectronics №6 for 2022 г.
Article in number:
Distortions of the radar signals envelope
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700784-202206-04
UDC: 621.396.96
Authors:

N.А. Kushnerev1, E.S. Nazarova2, М.V. Rodin3

1 JSC «Concern «VEGA» (Moscow, Russia)

2,3 Bauman Moscow State Technical University (Moscow, Russia)

 

Abstract:

Radars are widely used as information sensors in solving problems related to all-weather remote monitoring of objects and events in the surrounding space. Modern radars mainly work with signals, which are rectangular envelope radio pulses that makes it possible to implement highly efficient operation modes of semiconductor transmitter. Signals with inpulse linear (LFM) and nonlinear frequency modulation (NLFM) are often used.

However, as noted in the article, the radar signal envelope shaping in the semiconductor transmitter is inevitably accompanied by amplitude distortions, caused, firstly, by a decrease in the power supply voltage of the amplifier towards the end of the signal, secondly, by the unevenness of the amplitude-frequency response of the amplifier, and thirdly, by heating the crystal of the transistor and, as a result, a decrease in the gain during operation. As a rule, the envelope distortion of the radar LFM and NLFM signals reduces the radar informativity.

The article presents basic information about the radar signal envelope shaping in modern pulse radars and indicates the causes of its distortion. The results of the analysis of the distortion’s influence of LFM and NLFM radar signals envelope on the response shape of the matched-filter are described. Recommendations are formulated for the choice of the permissible voltage droop. It is shown that the permissible voltage drop should be chosen taking into account the compromise between the distortion matched-filter response on the receiving side of the radar and a decrease in the energy of the radar signal.

A brief review of the methods known from the scientific and technical literature aimed at reducing the envelope signal distortions is given. Currently, to effectively compensate for the distortion of the radar signals envelope, mainly methods are used aimed at predetecting the amplified signal and operational control of the power amplifier’s supply voltage. The current state of digital electronics makes it possible to create devices to compensate for changes in the power amplifier’s characteristics both during the duration of the amplified signal and during prolonged operation, taking into account all destabilizing factors, and thus form the radar signal envelope with high accuracy.

The article is of an overview nature and is intended, first of all, for engineers developing semiconductor radar transmitters.

Pages: 33-48
For citation

Kushnerev N.А., Nazarova E.S., Rodin М.V. Distortions of the radar signals envelope. Achievements of modern radioelectronics. 2022. V. 76. № 6. P. 33–48. DOI: https://doi.org/10.18127/j20700784-202206-04 [in Russian]

References
  1. Verba V.S. Razrabotka perspektivnykh bortovykh RLS: vozmozhnosti i ogranicheniya. Informatsionno-izmeritel'nye i upravlyayushchie sistemy. 2016. № 1. S. 6–20. [in Russian]
  2. Bil R., Brandfass M., Pieter van Bezouwen J. Future technological challenges for high performance radars. 19th International Radar Symposium. 2018. P. 1–10.
  3. Trukhachev A.A. Radiolokatsionnye signaly i ikh primenenie. M.: Voenizdat, 2005. [in Russian]
  4. Brown A. Active Electronically scanned arrays: fundamentals and applications. NY: Wiley-IEEE Press. 2022.
  5. Kirienko V.P. Reguliruemye preobrazovateli sistem impul'snogo elektropitaniya. Nizhniy Novgorod: NGTU. 2008. [in Russian]
  6. Sushkova N.S. Postroenie sistemy elektropitaniya dlya sovremennykh i perspektivnykh mnogoelementnykh AFAR. Pribory i sistemy. Upravlenie, kontrol', diagnostika. 2015. № 4. S. 39–43. [in Russian]
  7. Shao K., Wang C., Xiao H. Structure design of a array power supply for phased-array radar. Mach. Electron. 2015. № 4. P. 18–22.
  8. Korolev A.V., Kushnerev N.A., Rodin M.V. Ob elektropitanii vykhodnykh usilitel'nykh kaskadov priemo-peredayushchikh moduley
    impul'snykh RLS s AFAR. Elektropitanie. 2016. № 2. S. 33–41. [in Russian]
  9. Ding K., Wu F., Li S. et al. Design and research on a power distribution system for airborne radar. The Journal of Engineering. 2019. V. 2019. № 16. P. 1528–1531.
  10. DiFranco J., Rubin W. Analysis of signal processing distortion in radar systems. IRE Transactions on Military Electronics. 1962. V. MIL-6. P. 219–227.
  11. Nitzberg R. Effect of particular gain changes upon LFM sidelobes. IEEE Transactions on Aerospace and Electronic Systems. 1974. V. AES-10. № 6. P. 870–872.
  12. Wong K., Ricciardi G. Characterization of amplitude modulation bias coupling for solid-state high-power amplifiers. 2013 IEEE International Symposium on Phased Array Systems and Technology. 2013. P. 64–68.
  13. Eustice D., Baylis C., Cohen L. et al. Effects of power amplifier nonlinearities on the radar ambiguity function. IEEE Radar Conference. 2015. P. 1725–1729.
  14. Leifer M., Haupt R. Power amplifier and power supply distortion of pulse compression radar chirps. 2016 IEEE Radar Conference. 2016. P. 1–4.
  15. Khvatov S.V., Vanyaev V.V., Strelkov V.F. Elektromagnitnye protsessy v sisteme pitaniya peredayushchikh ustroystv RLS. Vestnik Ivanovskogo gosudarstvennogo energeticheskogo universiteta. 2011. № 3. S. 32–37. [in Russian]
  16. Kushnerev N.A. Ustroystvo elektropitaniya impul'snogo tverdotel'nogo peredatchika s vysokimi udel'nymi pokazatelyami. Radiotekhnika. 2009. № 5. S. 75–78. [in Russian]
  17. Wei W., Jensen O., Mikkelsen J. Self-heating and memory effects in RF power amplifiers explained through electro-thermal modeling. 2013 NORCHIP. 2013. P. 1–4.
  18. Emel'yanov B.V. Issledovanie amplitudno-fazovoy stabil'nosti bipolyarnykh impul'snykh SVCh tranzistorov, rabotayushchikh v okonechnykh usilitel'nykh kaskadakh RLS. Elektronnaya tekhnika. Ser. 2. Poluprovodnikovye pribory. 2019. № 3 (254). C. 19–28. [in Russian]
  19. Korolev A.V., Korshikov Ya.V., Ptitsina S.E. Unifikatsiya skhemotekhnicheskikh resheniy v usilitelyakh moshchnosti DMV diapazona. Sb. trudov XV Mezhdunar. nauch.-tekhnich. konf. «Radiolokatsiya, navigatsiya, svyaz'». 2009. T. 2. S. 1128–1135. [in Russian]
  20. Tua C., Pratt T., Zaghloul A. A study of interpulse instability in gallium nitride power amplifiers in multifunction radars. IEEE Transactions on Microwave Theory and Techniques. 2016. V. 64. № 11. P. 3732–3747.
  21. Beseda A.L., Zubkov M.V. Signaly s nelineynoy chastotnoy modulyatsiey, imeyushchie nizkiy uroven' bokovykh lepestkov avtokorrelyatsionnoy funktsii. Voprosy radioelektroniki. 2008. № 2. S. 101–112. [in Russian]
  22. Kang M., Kim B., Kim H. et al. A study on pulsed-LFM and pulsed-NLFM waveforms for radar systems. 2019 International Conference on Information and Communication Technology Convergence. 2019. P. 983–985.
  23. Solov'eva E.B. Metody linearizatsii kharakteristik usiliteley moshchnosti. Izvestiya SPbGETU «LETI». 2015. № 9. S. 41–47. [in Russian]
  24. Tikhonov V.Yu., Shinakov Yu.S. Kompensatsiya iskazheniy v nelineynykh inertsionnykh ustroystvakh. Sistemy sinkhronizatsii, formirovaniya i obrabotki signalov. 2018. № 1. S. 141–146. [in Russian]
  25. Bogdanov A.V., Kashchenko I.E. Rezul'taty eksperimental'nogo issledovaniya linearizatsii radioperedayushchego trakta. Uspekhi sovremennoy radioelektroniki. 2014. № 11. S. 38–42. [in Russian]
  26. Tushnov P.A., Berdyev V.S., Topchiev S.A. Tekhnologiya upravleniya vykhodnoy moshchnost'yu priemoperedayushchikh moduley kak sredstvo optimizatsii energeticheskikh kharakteristik aktivnykh fazirovannykh antennykh reshetok. Radiotekhnika. 2021. T. 85. № 10. S. 30–41. [in Russian]
  27. Yousefzadeh V., Wang N., Popovic Z., Maksimovic D. Digitally controlled DC/DC converter for an RF power amplifier. IEEE Transactions on Power Electronics. 2006. V. 21. № 1. P. 164–172.
  28. Korolev A.V., Kushnerev N.A., Kostyuchik D.A., Rodin M.V. Opyt razrabotki moshchnogo peredayushchego modulya AFAR P-diapazona s dinamicheskim upravleniem napryazheniem pitaniya dlya BRLS. Uspekhi sovremennoy radioelektroniki. 2015. № 5. S. 43–49.
    [in Russian]
  29. Korolev A.V., Kushnerev N.A., Kostyuchik D.A., Rodin M.V. Peredayushchiy modul' AFAR UHF-diapazona. Antenny. 2016. № 2.
    S. 26–31. [in Russian]

 

Date of receipt: 13.04.2022
Approved after review: 25.04.2022
Accepted for publication: 27.04.2022