350 rub
Journal Achievements of Modern Radioelectronics №12 for 2022 г.
Article in number:
Landing, navigation and surveillance radiotechnical system for unmanned aircraft
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700784-202212-10
UDC: 621.396
Authors:

K.B. Amelin1

1 St. Petersburg State University of Aerospace Instrumentation (St. Petersburg, Russia)

Abstract:

The landing of manned and unmanned aerial vehicles (UAVs) is a complex technical task that requires the search for new solutions to improve the unification and efficiency of the radio equipment used.

At the same time, technical solutions should be applicable to the maximum extent for equipping both manned and unmanned aircraft of various classes and types.

One of these solutions is the use of the global navigation satellite system (GNSS) in relative positioning mode.

Evaluation of the potentially achievable characteristics of the relative positioning mode for landing requires a lot of theoretical and experimental work.

The purpose of this work is investigation of potentially achievable characteristics of accuracy, integrity and continuity of the GNSS relative mode for automatic landing of UAVs.

A structure for constructing the multifunctional system (MFS) is proposed, in which the technology of automatic dependent surveillance (ADS) systems is used to provide the relative GNSS mode for UAV landing.

The performed calculations and experiment made it possible to determine the potentially achievable characteristics in the presence of intra-system interference in the ground-to-air and air-to-ground communication channels and various compositions of GNSS constellations in ground and onboard equipment.

The characteristics of the integrity and continuity of navigation information have been evaluated.

The results of flight experiments with the use of the MFS for UAV landing are presented.

It is shown that the proposed structure of the MFS construction ensures the landing of UAVs with the characteristics corresponding to the requirements for automatic landing.

The results obtained confirm the prospects of introducing the proposed structure for constructing the MFS for navigation, landing and surveillance for UAVs in order to increase the efficiency of their use, including in solving problems of automatic landing at airfields and sea vessels.

Pages: 72-81
For citation

Amelin K.B. Landing, navigation and surveillance radiotechnical system for unmanned aircraft. Achievements of modern radioelectronics. 2022. V. 76. № 12. P. 72–81. DOI: https://doi.org/ 10.18127/j20700784-202212-10 [in Russian]

References
  1. Antohina Yu.A., Baburov S.V., Bestugin A.R., Perelomov V.N., Sauta O.I. Razvitie navigacionnyh tekhnologij dlya povysheniya bezopasnosti poletov. Pod nauch. red. d-ra tekhn. nauk, prof. Yu.G. SHatrakova. Ministerstvo obrazovaniya i nauki Rossijskoj federacii. SPb.: GUAP. 2016. 298 s. [in Russian]
  2. Baburov S.V., Sauta O.I., Shatrakov A.Yu., Yushkov O.A. Sistema nablyudeniya, navigacii i posadki dlya aviacionno-tekhnicheskogo kompleksa arkticheskogo regiona Rossii. V kn.: Arkticheskoe prostranstvo Rossii v HKHI veke: faktory razvitiya, organizaciya upravleniya. Pod red. akad. V.V. Ivantera. SPb.: Sankt-Peterburgskij politekhnicheskij universitet Petra Velikogo; Izdatel'skij Dom «Nauka», 2016. 1016 s.; s. 898–914 [in Russian].
  3. Prilozhenie 10 k Konvencii o mezhdunarodnoj grazhdanskoj aviacii. Aviacionnaya elektrosvyaz'. Radionavigacionnye sredstva. Tom I. Izd. 6-e. Iyul' 2006 g. [in Russian].
  4. Prilozhenie 10 k Konvencii o mezhdunarodnoj grazhdanskoj aviacii. Aviacionnaya elektrosvyaz'. Sistemy nablyudeniya i preduprezhdeniya stolknovenij Tom IV. Izd. 4-e. Iyul' 2007 g. [in Russian].
  5. Amelin K.B., Bestugin A.R., Kirshina I.A., Sauta O.I. Mnogofunkcional'naya sistema nablyudeniya, navigacii i posadki letatel'nyh apparatov. Elektromagnitnye volny i elektronnye sistemy 2018. № 7. S. 78–84 [in Russian].
  6. Baburov V.I., Ponomarenko B.V. Principy integrirovannoj bortovoj avioniki. SPb.: Agentstvo «RDK-Print». 2005. 448 s. [in Russian].
  7. Shebshaevich V.S., Dmitriev P.P., Ivancevich N.V. i dr. Setevye sputnikovye radionavigacionnye sistemy. Izd. 2-e, perer. i dop. M.: Radio i svyaz'. 1993. 415 s. [in Russian].
  8. Baburov V.I., Ivancevich N.V., Vasil'eva N.V. Issledovanie metoda korrekcii koordinat pri mestoopredeleniyah po dvum sputnikovym sistemam. Trudy XXIX Sankt-Peterburgskoj Mezhdunarodnoj konferencii po integrirovannym navigacionnym sistemam, 30 maya – 1 iyunya 2022 goda. SPb. 2022. S. 329–333 [in Russian].
  9. Tarakanov K. V., Ovcharov L.A., Garyshkin A.N. Analiticheskie metody issledovaniya sistem. M.: Sov. radio. 1980. 460 s. [in Russian].
  10. Ivanov Yu.P., Nikitin V.G., Rogova A.A., Sauta O.I., Sobolev S.P. Metod ocenki celostnosti sputnikovoj navigacionnoj sistemy. Izv. vuzov Rossii. Ser.: Radioelektronika 2006. № 5. S. 69–77 [in Russian].
  11. Miroshnichenko A., Tatarchuk I., Fal'kov E., Shavrin S. Sravnenie propusknoj sposobnosti sistem avtomaticheskogo zavisimogo nablyudeniya-veshchaniya. Pervaya milya. 2020. № 3. S. 24–29 [in Russian].
  12. Podmarev A.A., Pavlovich O.V., Maslennikova A.A. Obosnovanie vybora struktury radiolokacionnogo datchika prepyatstvij dlya sistemy preduprezhdeniya stolknovenij BPLA s prepyatstviyami na osnove SDR-tekhnologii. Radiotekhnika. 2021. T.85. № 3. S. 128–133 [in Russian].
Date of receipt: 26.10.2022
Approved after review: 07.11.2022
Accepted for publication: 21.11.2022