I.Yu. Bratukhin1, A.F. Kriachko2, O.V. Shakin3
1 Joint-stock company «Signal» (St. Petersburg, Russia)
2,3 St. Petersburg State University of Aerospace Instrumentation (St. Petersburg, Russia)
The problem of modeling the microstructures of radio absorbing materials (RAM) can be solved by using Monte Carlo methods to construct topological features or to determine the constituent characteristics according to some stochastic distribution within the elementary volumes of RAM in the form of a sufficiently large number of regular cells. The aim of the work is to study the scattering-absorbing properties of RAM based on modeling the properties of microstructures. The practical significance lies in the reduction of computational costs due to a fairly simple domain decomposition, which can be effectively implemented using parallel and distributed computing technologies.
Bratukhin I.Yu., Kriachko A.F. Shakin O.V. Method for the synthesis of microlevel structures of radio-absorbing materials. Achievements of modern radioelectronics. 2022. V. 76. № 12. P. 37–45. DOI: https://doi.org/10.18127/j20700784-202212-06 [in Russian]
- Ljubin Dzh. Spravochnik po kompozicionnym materialam. V 2-h kn. Per. s angl. A.B. Gellera, M.M. Gel'monta. M.: Mashinostroenie. 1988. 448 s. (kn. 1), 584 s. (kn. 2) [in Russian].
- Dul'nev G., Zarichnjak Ju. Teploprovodnost' smesej i kompozicionnyh materialov. Spravochnaja kniga. Leningrad: Jenergija. 1974. 264 s. [in Russian].
- Torquato S. Random Heterogeneous Materials. Microstructure and Macroscopic Properties. New-York: Springer. 2002. 556 р.
- Poklonskij N., Gorbachuk. N. Osnovy impedansnoj spektroskopii kompozitov. Minsk: BGU. 2005. 130 s. [in Russian].
- Shevchenko V. Osnovy fiziki polimernyh kompozicionnyh materialov. M.: MGU. 2010. 99 s. [in Russian].
- Amdahl G. Validity of the Single Processor Approach to Achieving Large-Scale Computing Capabilities. AFIPS Conference Proceedings. V. 30. P. 483-485.
- Torquato S. Random Heterogeneous Materials. Microstructure and Macroscopic Properties. New-York: Springer. 2002. 556 р.
- Shnejderman Ja.A. Novye radiopogloshhajushhie materialy. Zarubezhnaja radiojelektronika. 1969. № 6. S. 101-124 [in Russian].
- Majzel's E.N., Torgovanov V.A. Izmerenie harakteristik rassejanija radiolokacionnyh celej. Zarubezhnaja radiojelektronika. 1972. № 7. S. 204-213 [in Russian].
- Lucev L.V., Nikolajchuk G.A., Petrov V.V., Jakovlev S.V. Mnogocelevye radiopogloshhajushhie materialy na osnove magnitnyh nanostruktur: poluchenie, svojstva i primenenie. Nanotehnika. 2008. № 2(14). S. 37–42 [in Russian].
- Kuznecov P.A., Zvorygin R.G., Bibikov S.B. Issledovanie na atomno-silovom mikroskope kinetiki kristallizacii nanokristallicheskogo splava Fe-Cu-Nb-Si-B i sozdanie na ego osnove sistem jelektromagnitnoj zashhity. Metally. 2005. № 6. S. 25-31 [in Russian].
- Ushakov N.M., Kosobudskiy I.D., YurkovG.Yu., Gubin S.P., Zapsis K.V., Kochubey V.I., Ulzutuev A.N. Novye kompozitnye nanomaterialy s upravlyaemymi svoystvami dlya radiotehniki i elektroniki. Radiotehnika. 2005. № 10. P.105-108 [in Russian].
- Yakushenko S.A., Dvornikov S.V., Kryachko A.F., Popov E.A., Zabelo A.N. Metodika ocenki ustojchivosti seti mnogokanal'noj radiosvyazi na osnove reshenie zadachi Koshi dlya sistemy matrichnyh uravnenij Kolmogorova, opisyvayushchih ee sostoyanie. Radiotekhnika. 2020. T. 84. № 12(24) [in Russian].