350 rub
Journal Achievements of Modern Radioelectronics №10 for 2022 г.
Article in number:
Mathematical model of promising magnetron-type generator in the terahertz frequency range
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700784-202210-04
UDC: 621.385.642
Authors:

V.B. Bayburin1, P.D. Cherepanov2, V.P. Meshchanov3, V.V. Komarov4, M.I. Balakin5

1,2,4,5 Saratov State University named after N.G. Chernyshevsky (Saratov, Russia)

3 JSC «NPP «Nika-SVCh» (Saratov, Russia)

 

Abstract:

As the analysis of modern monographs and review materials in recent years shows, the development of oscillators and amplifies in the terahertz range is one of the most important problems of modern radio engineering.  In the centimeter wavelength range, magnetron-type generators and amplifiers have proven themselves well due to their compactness, resistance to climatic, mechanical, and radiation loads. However, in the transition to the terahertz range (wavelengths of 1 mm and less), almost insurmountable difficulties occur due to the need for super precision manufacturing of multi-cavity anode structures, as well as their cooling. In order to overcome these problems, the authors propose to use the hypothesis of P.L. Kapitsa about the possibility of generating electromagnetic energy in the absence of a multi-cavity anode structure, namely, in the interaction space formed by a coaxial resonator. The paper presents a mathematical model of the magnetron current generator, which makes it possible to calculate the charge trajectory, induced currents, generation power at a frequency of 300 GHz. It is concluded that it is possible to further increase the generation frequency.

 

Pages: 39-45
For citation

Bayburin V.B., Cherepanov P.D., Meshchanov V.P., Komarov V.V., Balakin M.I. Mathematical model of promising magnetron-type generator in the terahertz frequency range. Achievements of modern radioelectronics. 2022. V. 76. № 10. P. 39–45. DOI: https://doi.org/10.18127/j20700784-202210-04 [in Russian]

References
  1. Grigor'ev A.D. Teragertsovaya elektronika. M.: Fizmatlit. 2020. [in Russian]
  2. Bayburin V.B., Rozov A.S., Khorovodova N.Yu., Nikiforov A.A. Novyy podkhod k sozdaniyu perspektivnykh kompaktnykh umnozhiteley chastoty subteragertsevogo i teragertsevogo diapazonov dlya primeneniya v usloviyakh bortovoy elektronnoy tekhniki. Radiotekhnika. 2021. T. 85. № 8. S. 111–121. DOI: https:// doi.org/10.18.127/i0038486-2021108-12. [in Russian]
  3. Generatsiya i usilenie signalov teragertsovogo diapazona: monografiya. Pod red. A.E. Khramova, A.G. Balanova, V.D. Eremki, V.E. Zapevalova, A.A Koronovskogo. Saratov: Sarat. gos. tekhn. un-t. 2016. [in Russian]
  4. Bayburin V.B., Meshchanov V.P., Rozov A.S. Otsenka KPD pri parametricheskoy generatsii v skreshchennykh polyakh. Radiotekhnika. 2015. № 7. S. 45–47. [in Russian]
  5. Bayburin V.B., Meshchanov V.P., Rozov A.S. Vliyanie poley prostranstvennogo zaryada na parametricheskuyu generatsiyu v skreshchennykh polyakh. Radiotekhnika. 2017. № 7. S. 95–97. [in Russian]
  6. Bayburin V.B., Rozov A.S., Khorovodova N.Yu. Chernyshev S.L. Sovmestnoe vliyanie razlichnykh faktorov na parametricheskuyu generatsiyu v skreshchennykh polyakh. Radiotekhnika. 2019. T. 83. № 7(10). S. 52–56. DOI: 10.18127/j00338486-201907 (10)-09. [in Russian]
  7. Zakharov A.A. Buldakov E.I., Eremin V.P. Issledovanie i razrabotka moshchnykh impul'snykh dvukhmillimetrovykh magnetronov povyshennoy nadezhnosti. Vestnik Saratovskogo gosudarstvennogo tekhnicheskogo universiteta. 2011. № 4 (60). V. 2. S. 80–86. [in Russian]
  8. Kapitsa P.L. Elektronika bol'shikh moshchnostey. M.: Izd-vo akademicheskikh nauk SSSR. 1962. [in Russian]
  9. Vaynshteyn L.Ya., Solntsev V.A. Lektsii po sverkhvysokochastotnoy elektronike. M.: Sov. radio. 1973. [in Russian]
  10. Kuraev A.A., Bayburin V.B., Il'in E.M. Matematicheskie modeli i metody optimal'nogo proektirovaniya SVCh priborov. Minsk: Nauka i tekhnika. 1990. [in Russian]
  11. Shockley W. Currents to Conductors Induced by a Moving Point Charge. Journal of Applied Physics. 1938. № 9 (10). P. 635–636. DOI: 10.1063/1.1710367.
  12. Dyubua B.Ch., Korolev A.N. Sovremennye effektivnye katody (K istorii ikh sozdaniya na FGUP «NPP «Istok»). Elektronnaya tekhnika. Ser. 1. SVCh-tekhnika: nauch.-tekhnich. sbornik. M. 2011. S. 5–24. [in Russian]
  13. Gvozdover S.D. Teoriya elektronnykh priborov sverkhvysokikh chastot. M.: Tekhniko-teoreticheskaya literatura. 1956. [in Russian]
  14. Vol'man V.I., Pimenov Yu.V. Tekhnicheskaya elektrodinamika. M.: Svyaz'. 1971. [in Russian]

 

Date of receipt: 02.08.2022
Approved after review: 12.08.2022
Accepted for publication: 30.09.2022