350 rub
Journal Achievements of Modern Radioelectronics №10 for 2022 г.
Article in number:
Radio-electronic control systems of sixth generation fighters. Part 3. Hierarchical levels of information processing and control formation. Directions of development
Type of article: overview article
DOI: https://doi.org/10.18127/j20700784-202210-01
UDC: 623.681.93
Authors:

A.S. Bogachev1, V.I. Merkulov2, I.R. Zagrebelnyi3

1–3 JSC Radio Engineering Corporation Vega (Moscow, Russia)

 

Abstract:

The analysis of the programs for the creation of fifth-generation aircraft and the architecture of their onboard complexes showed that the radio-electronic control systems of the 6th generation fighter will have a hierarchical multi-level, multi-channel structure. The main tool for system analysis of such a structure as complex technical systems is decomposition, which allows you to distinguish four levels of information processing.

The first (lower) hierarchical level is the level of preliminary analog and digital spatial, spatial-temporal and temporal processing of natural and artificial information (signal) fields and corresponding signals, as well as signals coming from external sources. At this level, signals are also distributed between information and control channels (ICS).

The second hierarchical level of information processing and management is the level of signal and video signal processing, complex primary signal processing, data exchange with storage devices (memory) of the third level of the hierarchy.

The third hierarchical level of information processing and management is the level of data processing and knowledge, complex information processing, generation of control signals in accordance with the functional purpose of the ICS.

The fourth (upper) network-centric level of information processing and management acts as a system hierarchical level of data processing and knowledge, management and information exchange.

In relation to the hierarchy levels, the directions of information processing and management are considered, which, first of all, include:

full-scale implementation of an on-board network-centric control system;

implementation of the «smart cladding» concept;

development and implementation of systems of unified coordinate-time support, monitoring of the interference situation and electromagnetic compatibility, integrity of radio navigation fields;

development and implementation of an information security system (cyber defense), a new generation state identification system;

widespread introduction of optical signal processing methods in radioelectronic ICS, transition from the use of photonics with micron-level technology to radiophotonics;

improving the performance, reliability and degree of intellectualization of the on-board computer systems, made in the form of a high-performance computing system of network architecture;

development of hierarchical architectures of general aircraft systems such as the avionics assistant system;

development and implementation of constructive adaptive algorithms for joint (complex) statistical processing of fields (signals) using analog-discrete methods of optimal estimation, as well as algorithms for joint detection and evaluation at the level of primary information processing;

development and implementation of adaptive algorithms for controlling radiofrequency ICS radiation in the spatial, space-time and time domains;

development and implementation of adaptive algorithms for controlling the aircraft signature;

development and implementation of adaptive algorithms for reconfiguration of the structure and architecture of the highly integrated on-board complex as a whole in case of failures, combat damage and in a complex interference environment.

In turn, the development of effective algorithms for solving management tasks includes: management of on-board resources; trajectory control of the fighter itself, including flight in a tight group; control of unmanned fighter modifications, including as part of a group; control of means of destruction based on non-stationary guidance methods; the use of electromagnetic weapons.

The implementation of the measures contained in the proposed directions for ensuring high efficiency and the development of multi-level, multi-channel information processing and hierarchical management in the radio-electronic control systems of the 6th generation fighter will require the use of a number of promising design technologies and, above all, such as ATIP integration and prototyping technology.

In the final part, conclusions are formulated based on the materials presented in the first, second and third parts of the article.

Pages: 5-22
For citation

Bogachev A.S., Merkulov V.I., Zagrebelnyi I.R.  Radio-electronic control systems of sixth generation fighters. Part 3. Hierarchical levels of information processing and control formation. Directions of development. Achievements of modern radioelectronics. 2022. V. 76. № 10. P. 5–21. DOI: https://doi.org/10.18127/j20700784-202210-01 [in Russian]

References
  1. Merkulov V.I., Savel'ev A.N. Radioelektronnye sistemy upravleniya istrebiteley shestogo pokoleniya. Ch. 1. Podkhody k razrabotke. Problemy optimizatsii. Uspekhi sovremennoy radioelektroniki. 2022. T. 76. № 8. S. 5–16. DOI: https://doi.org/10.18127/j20700784-202208-01. [in Russian]
  2. Bogachev A.S., Merkulov V.I., Savel'ev A.N., Zagrebel'nyy I.R. Radioelektronnye sistemy upravleniya istrebiteley shestogo pokoleniya. Ch. 2. Arkhitektura bortovogo kompleksa. Osobennosti integratsii i elementnoy bazy. Uspekhi sovremennoy radioelektroniki. 2022. T. 76. № 9. S. 5–14. DOI: https://doi.org/10.18127/j20700784-202209-01. [in Russian]
  3. Bortovye sistemy upravleniya boevymi rezhimami sovremennykh i perspektivnykh samoletov. Kn. 1: Analiticheskiy obzor po materialam zarubezhnykh informatsionnykh istochnikov. Pod obshchey red. akad. RAN E.A. Fedosova. M.: NITs GosNIIAS. 2009. [in Russian]
  4. Bortovye sistemy upravleniya boevymi rezhimami sovremennykh i perspektivnykh samoletov. Kn. 2: Analiticheskiy obzor po materialam zarubezhnykh informatsionnykh istochnikov. Pod obshchey red. akad. RAN E.A. Fedosova. M.: NITs GosNIIAS. 2010. [in Russian]
  5. Avgustov L.I., Babichenko A.V., Orekhov M.I., Sukhorukov S.Ya., Shkred V.K. Navigatsiya letatel'nykh apparatov v okolozemnom prostranstve. Pod red. G.M. Dzhandgavy. M.: OOO «Nauchtekhmetizdat». 2015. [in Russian]
  6. Chernyak V.S. Mnogopozitsionnaya radiolokatsiya. M.: Radio i svyaz'. 1993. [in Russian]
  7. Lambeth B.S. Technology and air war. Air Force Mag. 1996. № 11.
  8. Yarlykov M.S., Bogachev A.S., Merkulov V.I., Drogalin V.V. Radioelektronnye kompleksy navigatsii, pritselivaniya i upravleniya vooruzheniem letatel'nykh apparatov. T. 1. Teoreticheskie osnovy. Pod red. M.S. Yarlykova. M.: Radiotekhnika. 2012. [in Russian]
  9. Yarlykov M.S., Mironov M.A. Markovskaya teoriya otsenivaniya sluchaynykh protsessov. M.: Radio i svyaz'. 1993. [in Russian]
  10. Yarlykov M.S. Meandrovye shumopodobnye signaly (BOC signaly) i ikh raznovidnosti v sputnikovykh radionavigatsionnykh sistemakh. Monografiya. M.: Radiotekhnika. 2017. [in Russian]
  11. Shumov A.V., Nefedov S.I., Bikmetov A.R. Kontseptsiya postroeniya radiolokatsionnoy stantsii na osnove elementov radiofotoniki. Nauka i Obrazovanie. MGTU im. N.E. Baumana. Elektronnyy zhurnal. 2016. № 5. S. 41–65. DOI: 10.7463/0516.0840246. [in Russian]
  12. Bogomolov P.A., Sidorov V.I., Usol'tsev I.F. Priemnye ustroystva IK sistem. M.: Radio i svyaz'. 1987. [in Russian]
  13. Sovremennoe sostoyanie i perspektivy razvitiya bespilotnykh aviatsionnykh sistem XXI veka (Analiticheskiy obzor po materialam zarubezhnykh informatsionnykh istochnikov). Pod obshch. red. akademika RAN E.A. Fedosova. M.: NITs GosNII-AS. 2011. [in Russian]
  14. Vil'tizer Yu.V., Zheltov S.Yu. Problemy tekhnicheskogo zreniya v sovremennykh aviatsionnykh sistemakh. Tekhnicheskoe zrenie v sistemakh upravleniya mobil'nymi ob"ektami – 2010. Trudy nauch.-tekhnich. konferentsii-seminara. V. 4. Pod red. V.V. Nazirova. KDU. 2011. [in Russian]
  15. Barankin E.S., Zelenyuk Yu.I., Kostyashkin L.N. Videoinformatsionnye i lazernye tekhnologii v apparature vysokotochnogo upravleniya oruzhiem. Ustroystva izmereniya, sbora i obrabotki signalov v informatsionno-upravlyayushchikh kompleksakh. Tezisy dokladov 1-y Vseros. nauch.-praktich. konf. Ul'yanovsk. UlGTU. 2011. [in Russian]
  16. Kostyashkin L.N., Babaev S.I., Loginov A.A., Pavlov O.V. Tekhnologii sistem uluchshennogo. sintezirovannogo zreniya dlya upravleniya letatel'nymi apparatami. Tekhnicheskoe zrenie v sistemakh upravleniya mobil'nymi ob"ektami – 2010. Trudy nauch.-tekhnich. konferentsii-seminara. V. 4. Pod red. V.V. Nazirova. KDU. 2011. [in Russian]
  17. Sovremennye informatsionnye tekhnologii v zadachakh navigatsii i navedeniya bespilotnykh manevrennykh letatel'nykh apparatov. Pod red. M.N. Krasil'shchikova, G.T. Sebryakova. M.: Fizmatlit. 2009. [in Russian]
  18. Bystrov A.V., Mitrofanov D.G. Perspektivnye napravleniya razvitiya tekhnicheskikh sredstv opoznavaniya vozdushnykh tseley.
    Zarubezhnaya radioelektronika. 1996. № 2. [in Russian]
  19. RLS – informatsionnaya osnova boevykh deystviy mnogofunktsional'nykh samoletov. T. 1. Sistemy i algoritmy pervichnoy obrabotki radiolokatsionnykh signalov. Pod red. A.I. Kanashchenkova i V.I. Merkulova. M.: Radiotekhnika. [in Russian]
  20. Jones H.L. Perspective on intelligent avionics. SAE Techn. Pap. 1987. №871856.
  21. Kanashchenkov A.I., Merkulov V.I., Samarin O.F. Oblik perspektivnykh bortovykh radiolokatsionnykh sistem. Vozmozhnosti i ogranicheniya. M.: IPRZhR. 2002. [in Russian]
  22. Zashchita radiolokatsionnykh sistem ot pomekh. Sostoyanie i tendentsii razvitiya. Pod red. A.I. Kanashchenkova i V.I. Merkulova. M.: Radiotekhnika. 2003. [in Russian]
  23. Dobykin V.D., Kupriyanov A.I., Ponomarev V.G., Shustov L.N. Radioelektronnaya bor'ba. Silovoe porazhenie radioelektronnykh sistem. M.: Vuzovskaya kniga. 2007. [in Russian]
  24. Merkulov V.I., Ushakov V.N. SVCh-oruzhie funktsional'nogo porazheniya dlya zashchity aviatsionnykh kompleksov. Radioelektronnye tekhnologii. 2015. № 3. [in Russian]
  25. Antsev G.V., Sarychev V.A. Sistemy samonavedeniya vysokotochnogo oruzhiya. Tezaurus. M.: Radiotekhnika. 2020. [in Russian]
  26. Vorob'ev A., Favorov Yu. Reshenie problemy elektromagnitnoy sovmestimosti kriticheskikh sistem letatel'nykh apparatov. Radioelektronnye tekhnologii. Informatsionno-analiticheskiy zhurnal. 2019. № 1. [in Russian]
  27. Kondratenkov G.S., Frolov A.Yu. Radiovidenie. Radiolokatsionnye sistemy distantsionnogo zondirovaniya Zemli. Pod red. G.S. Kondratenkova. M.: Radiotekhnika. 2005. [in Russian]
  28. Merkulov V.I., Zabelin I.V. Traektornoe upravlenie nablyudeniem kak sposob sozdaniya prednamerennykh algoritmicheskikh vozdeystviy na radiolokatsionnye sistemy. Radiotekhnika. 2010. № 7. [in Russian]
  29. Verba V.S., Zagrebel'nyy I.R., Merkulov V.I. Metod skrytnogo komandnogo navedeniya letatel'nykh apparatov v informatsionnom pole impul'sno-doplerovskoy RLS. Sb. nauch.-metodich. trudov I Vseros. nauch.-praktich. konf. «Aktual'nye voprosy vooruzheniya, voennoy i spetsial'noy tekhniki voysk PVO i PRO, kosmicheskikh voysk VKS» MGTU im. N.E. Baumana. 2016. S. 485–495. [in Russian]
  30. Kompleksy s bespilotnymi letatel'nymi apparatami. Kn. 2. Robototekhnicheskie kompleksy na osnove BLA. Pod red. V.S. Verby i B.G. Tatarskogo. M.: Radiotekhnika. 2016. [in Russian]
  31. Kalyaev I.A., Gayduk A.R., Kapustyan S.G. Modeli i algoritmy kollektivnogo upravleniya v gruppakh robotov. M.: Fizmatlit. 2009. [in Russian]
  32. Verba V.S. Optimizatsiya upravleniya bespilotnymi letatel'nymi apparatami, obespechivayushchaya ikh soglasovannoe dvizhenie po marshrutu s zadannoy topologiey. Radiotekhnika i elektronika. 2022. T. 67. № 1. S. 68–77. [in Russian]
  33. Verba V.S., Merkulov V.I., Ievlev D.I. Metod perekhvata prioritetnoy tseli, soprovozhdaemoy istrebitelyami okhraneniya. Radiotekhnika. 2020. № 2. S. 5–12. [in Russian]
  34. Merkulov V.I. Nestatsionarnye metody samonavedeniya. Vestnik VKO. 2020. № 1 (25). S. 25–39. [in Russian]

 

Date of receipt: 23.06.2022
Approved after review: 14.07.2022
Accepted for publication: 30.09.2022