350 rub
Journal Achievements of Modern Radioelectronics №1 for 2022 г.
Article in number:
Determination of the coordinates of the radio emission source of linear-frequency-modulated signals by a single-position difference-rangefinder method
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700784-202201-05
UDC: 629.3.066.8
Authors:

V.P. Likhachev1, Hong Phu Nguyen2

1,2 MTSC Air Forces «MAA named professor N.E. Zhukovsky and Y.A. Gagarin» (Voronezh, Russia)

Abstract:

The difference-rangefinder method (DRM) is successfully used by ground-based radio monitoring complexes to determine the current coordinates of air sources of radio emissions (SRE), including radiation from onboard radars with synthesized aperture (SAR). The disadvantage of the difference-rangefinder method is the need to use at least three receivers located at a considerable distance from each other. In addition, when using linear-frequency-modulated signals (LFM) in SAR, broadband data transmission channels are required.

The paper considers a variant of the implementation of this method for determining the coordinates of a moving source of linear-frequency-modulated signals by one means of radio monitoring with three receiving antennas. It is proposed to process the SAR signals with an autocorrelation receiver (AR), which is invariant to the value of the Doppler frequency of the received signals, and to estimate the relative delay of signals from imaginary receiving points (IRP). In this case, «signals of IRP» are understood as sounding signals of the radar, re-reflected by natural or anthropogenic objects on the ground, to which additional receiving antennas are directed.

When deriving the dependence of the signal-to-noise ratio at the output of the AR, the bistatic effective scattering area of the IRP is taken into account. Taking into account the geometric factor of the main and two imaginary receiving positions, an expression of the potential accuracy of estimating the coordinates of the source of LFM signals is obtained.

The effectiveness of the proposed method is investigated on the basis of simulation modeling. The accuracy of estimating the coordinates of the SAR air carrier at ranges less than 40 km ranged from tens of meters to units of kilometers. The results of the work can be used to expand the scope of the difference-rangefinder method for determining the coordinates of moving SRE.

Pages: 59-68
For citation

Likhachev V.P., Nguyen Hong Phu Determination of the coordinates of the radio emission source of linear-frequency-modulated signals by a single-position difference-rangefinder method. Achievements of modern radioelectronics. 2022. V. 76. № 1. P. 59–68. DOI: https://doi.org/ 10.18127/j20700784-202201-05 [in Russian]

References
  1. Aviatsionnye sistemy radiovideniya. Monografiya. Pod red. G.S. Kondratenkova. M.: Radiotekhnika. 2015.
  2. Kupryashkin I.F., Likhachev V.P. Kosmicheskaya radiolokatsionnaya s"emka zemnoy poverkhnosti v usloviyakh pomekh: monografiya. Voronezh: Nauchnaya kniga. 2014.
  3. Bogomolov A.V., Kupryashkin I.F., Likhachev V.P., Ryazantsev L.B. Malogabaritnaya dvukhdiapazonnaya RSA dlya bespilotnogo aviatsionnogo kompleksa. Trudy XXIX Vserossiyskogo simpoziuma «Radiolokatsionnoe issledovanie prirodnykh sred». Pod obshch. red. M.M. Pen'kova. SPb.: VKA im. A.F. Mozhayskogo. 2015. V. 11. S. 235–240.
  4. Likhachev V.P., Pashuk M.F. Mnogodiapazonnaya malogabaritnaya RLS s sintezirovannoy aperturoy antenny. Printsipy postroeniya i funktsionirovaniya, perspektivy. Materialy VI obshcheross. nauch.-tekhnich. konf. AO «Korporatsiya «Takticheskoe raketnoe vooruzhenie»; AO «Tsentral'noe konstruktorskoe byuro avtomatiki»; FGBOU VO «Omskiy gosudarstvennyy tekhnicheskiy universitet». Sb.: Obmen opytom v oblasti sozdaniya sverkhshirokopolosnykh radioelektronnykh sistem. 2016. S. 261–271.
  5. Kupryashkin I.F., Likhachev V.P., Mitrofanov D.G., Ryazantsev L.B., Rastrygin Yu.V. Mnogofunktsional'nyy malogabaritnyy bespilotnyy aviatsionnyy kompleks «Flibust'er». Izvestiya RARAN. 2018. № 4 (104). S. 102–110.
  6. Likhachev V.P., Pantyukhin M.A., Sidorenko S.V. Algoritm morfologicheskoy obrabotki radiolokatsionnykh izobrazheniy i avtomaticheskogo obnaruzheniya ob"ektov po radiolokatsionnoy teni. Voronezh: Vestnik VGU. Ser. «Sistemnyy analiz i informatsionnye tekhnologii». 2018. № 2. S. 149–161.
  7. Kupryashkin I.F., Likhachev V.P., Ryazantsev L.B. Kratkiy opyt sozdaniya i pervye rezul'taty prakticheskoy s"emki poverkhnosti malogabaritnoy RLS s sintezirovaniem apertury antenny s borta mul'tikoptera. Zhurnal radioelektroniki. 2019. № 4. [El. zhurnal]. URL: http://jre.cplire.ru/jre/apr19/12/text.pdf.
  8. Kupryashkin I.F., Likhachev V.P., Ryazantsev L.B. Malogabaritnye mnogofunktsional'nye RLS s nepreryvnym chastotno-modulirovannym izlucheniem. M.: Radiotekhnika. 2020.
  9. Likhachev V.P., Kupryashkin I.F., Semenov V.V., Sotnikov I.M. Obosnovanie trebovaniy k vychislitel'nomu ustroystvu tsifrovogo avtokorrelyatsionnogo priemnika signalov RSA. Zhurnal radioelektroniki. 2014. №1. [El. resurs]. URL: http://jre.cplire.ru/jre/jan14/20/text.html.
  10. Patent № 2578041 RF. Sposob opredeleniya parametrov LChM signalov. Likhachev V.P., Semenov V.V. Opubl. 20.03.2016. Byul. № 8.
  11. Likhachev V.P., Semenov V.V., Veselkov A.A. Eksperimental'naya aprobatsiya algoritma opredeleniya chastotno-vremennykh parametrov LChM-signalov. Telekommunikatsii. 2016. № 5. S. 2–7.
  12. Likhachev V.P., Veselkov A.A., Nguen Ch.N. Kharakteristiki obnaruzheniya lineyno-chastotno-modulirovannykh, fazo-kodo-manipulirovannykh i prostykh radioimpul'sov v avtokorrelyatsionnom priemnike. Radiotekhnika. 2018. № 8. S. 71–76.
  13. Patent № 2683791 RF. Sposob opredeleniya vidov radiolokatsionnykh signalov v avtokorrelyatsionnom priemnike. Likhachev V.P., Nguen Ch.N., Veselkov A.A. Opubl.: 02.04.2019. Byul. № 10.
  14. Bakulev P.A. Radiolokatsionnye sistemy: Uchebnik dlya vuzov. M.: Radiotekhnika. 2004.
  15. Grishin Yu.P., Ipatov V.P., Kazarinov Yu.M. Radiotekhnicheskie sistemy. Pod red. Yu.M. Kazarinova. M.: Vysshaya shkola. 1992.
  16. Veselkov A.A, Likhachev V.P., Semenov V.V. Raznostno-dal'nomernyy sposob opredeleniya mestopolozheniya radiolokatsionnykh stantsiy s lineyno-chastotno-modulirovannymi signalami prostranstvenno-raznesennymi avtokorrelyatsionnymi priemnikami. Voronezh: Vestnik Voenno-vozdushnoy akademii. 2017. № 3(30). S. 192–198.
  17. Bulychev Yu.G., Ivakina S.S., Nasenkov I.G. Obosnovanie vozmozhnosti kombinirovannogo primeneniya uglomernogo i uglomerno-moshchnostnogo metodov passivnoy lokatsii. Radiotekhnika. 2015. № 3. S. 128–136.
  18. Berdinskikh L.N., Voynov D.S., Likhachev V.P., Utkin V.V. Identifikatsiya i opredelenie mestopolozheniya istochnikov radioizlucheniya seti WIMAX v mnogopozitsionnoy radiotekhnicheskoy sisteme raznostno-dal'nomernym sposobom. Telekommunikatsii. 2016. № 7. S. 19–24.
  19. Likhachev V.P., Podstrigaev A.S., Nguyen Trong Nhan, Davydov V.V., Myazin N.S. Study of the Accuracy of Determining the Location of Radio Emission Sources with Complex Signals when Using Autocorrelation and Matrix Receivers in Broadband Tools for Analyzing the Electronic Environment. Lecture Notes in Computer Science. 2020. V. 12525. P. 326–333. DOI: 10.1007/978-3-030-65726-0_29.
  20. Aver'yanov V.E. Raznesennye radiolokatsionnye stantsii i sistemy. Minsk: Nauka i tekhnika. 1978.
  21. Saybel' A.G. Osnovy teorii tochnosti radiotekhnicheskikh metodov mestoopredeleniya: Uch. posob. M.: Gosizdat. oboronnoy promyshlennosti. 1958.
  22. Gubina S.S., Federova O.S., Vasil'eva I.E., Shuba A.V. Informatika: metody resheniya zadach vyshey matematiki sredstvami programmy MATHCAD: ucheb.-metodich. posobie. Voronezh. 2017. S. 33–49. [in Russian]
Date of receipt: 09.11.2021
Approved after review: 25.11.2021
Accepted for publication: 23.12.2021