D.G. Pantenkov
JSC «Kronstadt» (Moscow, Russia)
Civil, special and dual-use satellite communication systems are used everywhere in space, land, aviation and maritime means of transmitting information to remote subscribers. At the same time, during operation of these systems, one of the main issues is ensuring the required level of noise immunity of communication channels when operating in a complex electromagnetic environment, in conditions of both unintentional and intentional interference. This article proposes a technique for estimating the noise immunity of spacecraft on-board repeaters and satellite earth stations under the influence of intentional interference based on the application of the suppression coordinate law, which takes into account the probabilities of suppressing a useful communication signal depending on the coordinates of interference points by frequency, time, radiation power.
The results of calculations and graphical dependencies based on results of mathematical simulation of impact efficiency on onboard repeaters of spacecraft and terrestrial stations of satellite communication of noise barrier by frequency of interference in modes of repeater functioning both with direct transfer of signal spectrum by frequency and with its processing on board are presented.
At any stage of design of communication systems in the composition of various complexes of aviation, sea, land, space bases, it is possible to obtain estimates of their noise immunity, or vice versa, when designing electronic warfare, to obtain estimates of suppression of satellite communication systems according to the probability criterion.
Pantenkov D.G. Estimating the noise immunity of spacecraft on-board repeaters and satellite earth stations under the influence of intentional interference. Achievements of modern radioelectronics. 2021. V. 75. № 7. P. 48–63. DOI: https://doi.org/10.18127/ j20700784-202107-04 [in Russian]
- Lutsenko S.A. Metodicheskiy apparat destruktivnogo vozdeystviya na sputnikovye komandno-programmnye radiolinii. Innovatsionnye tekhnologii i tekhnicheskie sredstva spetsial'nogo naznacheniya. Trudy X Obshcheross. nauch.-praktich. konf. SPb.: Voenmekh. 2017. S. 233–241. [in Russian]
- Egorov A.T., Lomakin A.A., Pantenkov D.G. Matematicheskie modeli otsenki skrytnosti sputnikovykh kanalov radiosvyazi s bespilotnymi letatel'nymi apparatami. Ch. 1. Trudy uchebnykh zavedeniy svyazi. 2019. T. 5. № 3. S. 19‒26. [in Russian]
- Lomakin A.A., Pantenkov D.G., Sokolov V.M. Matematicheskie modeli otsenki skrytnosti sputnikovykh kanalov radiosvyazi s bespilotnymi letatel'nymi apparatami. Ch. 2. Trudy uchebnykh zavedeniy svyazi. 2019. T. 5. № 4. S. 37–48. [in Russian]
- Makarenko S.I. Robototekhnicheskie kompleksy voennogo naznacheniya – sovremennoe sostoyanie i perspektivy razvitiya. Sistemy upravleniya, svyazi i bezopasnosti. 2016. № 2. S. 73–132. [in Russian]
- Makarenko S.I., Ivanov M.S. Setetsentricheskaya voyna – printsipy, tekhnologii, primery i perspektivy. Monografiya. SPb.: Naukoemkie tekhnologii. 2018. [in Russian]
- Korotkov S.Yu., Pashintsev V.P., Solchatov M.E. Pomekhoustoychivost' sputnikovoy svyazi pri aktivnykh pomekhakh i ogranichennoy polose kogerentnosti kanala. Infokommunikatsionnye tekhnologii. Samara. 2013. № 4. S. 35–38. [in Russian]
- Patent RF № 2637799. Sposob radiopodavleniya kanalov svyazi. Agievich S.N., Gulidov A.A., Lutsenko S.A. i dr. Prior. ot 22.02.2017.
- Sklyar B. Tsifrovaya svyaz'. Teoreticheskie osnovy i prakticheskoe primenenie. Izd. 2-e, ispr. Per. s angl. M.: Izdatel'skiy dom «Vil'yams». 2004. [in Russian]
- Pantenkov D.G. Rezul'taty matematicheskogo modelirovaniya pomekhoustoychivosti sputnikovykh sistem radiosvyazi pri vozdeystvii prednamerennykh pomekh. Radiotekhnika. 2020. T. 84. № 5 (10). S. 20–30. [in Russian]
- Pantenkov D.G. Tekhnicheskie kharakteristiki bortovykh retranslyatorov kosmicheskikh apparatov dlya obespecheniya zagorizontnoy radiosvyazi s bespilotnymi letatel'nymi apparatami. Radiotekhnika. 2020. T. 84. № 5 (9). S. 58–74. [in Russian]
- Pantenkov D.G., Lomakin A.A. Otsenka ustoychivosti sputnikovogo kanala upravleniya bespilotnymi letatel'nymi apparatami. Radiotekhnika. 2019. T. 83. № 11 (17). S. 43–50. [in Russian]
- Borisov V.I., Zinchuk V.M., Limarev A.E. i dr. Pomekhozashchishchennost' sistem radiosvyazi s rasshireniem spektra signalov modulyatsiey nesushchey psevdosluchaynoy posledovatel'nost'yu. Pod red. V.I. Borisova. M.: Radio i svyaz'. 2003. [in Russian]
- Boev N.M. Analiz komandno-telemetricheskoy radiolinii svyazi s bespilotnymi letatel'nymi apparatami. Vestnik Sib. gos. aerokosmicheskogo un-ta im. akademika M.F. Reshetneva. 2012. № 2 (42). S. 86–91. [in Russian]
- Kamnev V.E. Preimushchestva i nedostatki razlichnykh sputnikovykh sistem svyazi. Sputnikovaya svyaz'-2007. Doklady. T. 1. M. 2007. [in Russian]
- Pantenkov D.G. Rezul'taty analiza nazemnykh ispytaniy kompleksa sredstv sputnikovoy radiosvyazi dlya bespilotnykh letatel'nykh apparatov. Vestnik Ryazanskogo gos. radiotekhnicheskogo un-ta. 2019. № 69. S. 42–51. [in Russian]
- Sistemy sputnikovoy svyazi. Ucheb. posobie dlya VUZov. Pod red. L.Ya. Kantora. M.: Radio i Svyaz'. 1992.
- Bartenev V.A., Bolotov G.V., Bykov V.L. i dr. Sputnikovaya svyaz' i veshchanie. Spravochnik. Izd. 3-e, pererab. i dop. Pod red. L.Ya. Kantora. M.: Radio i svyaz'. 1997. [in Russian]
- Mashbits L.M. Komp'yuternaya kartografiya i zony sputnikovoy svyazi. SPb.: Sistemy svyazi. 2008. [in Russian]
- Parshutkin A.V, Baranov V.M., Maslakov P.A. Issledovanie pomekhoustoychivosti kanala sputnikovoy svyazi standarta DVB-S2 k vozdeystviyu nestatsionarnykh pomekh. Voprosy oboronnoy tekhniki. Tekhnicheskie sredstva protivodeystviya terrorizmu. Ser. 16. 2016. V. 9–10. S. 89–95. [in Russian]
- Dolzhenkov N.N., Fedulin A.M., Dryagin D.M. Puti povysheniya avtonomnosti krupnorazmernykh bespilotnykh aviatsionnykh sistem dvoynogo naznacheniya. Polet. Obshcherossiyskiy nauchno-tekhnicheskiy zhurnal. 2020. № 9. S. 3–11. [in Russian]
- Fedulin A.M., Dryagin D.M. Osnovnye podkhody k povysheniyu avtonomnosti krupnorazmernykh bespilotnykh aviatsionnykh sistem dvoynogo naznacheniya. Nanoindustriya. SPb. 2020. S. 718–720. [in Russian]
- Novikov E.A. Primenenie modeley strukturnoy dinamiki pri reshenii zadachi raspredeleniya chastotno-vremennogo resursa seti sputnikovoy svyazi na osnove standarta DVB-RCS. Informatsionno-upravlyayushchie sistemy. 2013. № 3. S. 78–83. [in Russian]
- Dogerti M. Drony: Pervyy illyustrirovannyy putevoditel' po BPLA: Voyna vysokikh tekhnologiy. Izd. «GrandMaster», 2017. [in Russian]
- Frolov O.P., Val'd V.P. Zerkal'nye antenny dlya zemnykh stantsiy sputnikovoy svyazi. M.: Goryachaya liniya – Telekom. 2008. [in Russian]
- Testoedov N.A., Kosenko V.E., Vygonskiy Yu.G., Kuzovnikov A.V., Mukhin V.A., Chebotarev V.E. i dr. Kosmicheskie sistemy retranslyatsii. M.: Radiotekhnika. 2017. [in Russian]
- Zhuravlev V.I., Rudnev A.N. Tsifrovaya fazovaya modulyatsiya. M.: Radiotekhnika. 2012. [in Russian]