Journal Achievements of Modern Radioelectronics №6 for 2021 г.
Article in number:
Wideband microstrip dual polarization radiator for X-band APAA
Type of article: scientific article
DOI: 10.18127/j03209601-201906-02
UDC: 621.396.677.3+621.396.677.7
Authors:

P.L. Batov – Deputy Head of Experimental Design Bureau,

PJSC «Scientific-production association «Almaz» (Moscow) 

E-mail: skb.spo@gskb.ru

E.N. Gurkin – Deputy Head of Special Design Bureau,

PJSC «Scientific-production association «Almaz» (Moscow)

S.O. Knyazev – Leading engineer,

PJSC «Scientific-production association «Almaz» (Moscow)

D.L. Borisevitch – Deputy Head of Department,

JSC «ZRTO» (St. Petersburg)

Abstract:

In this paper the model and the construction of a wideband microstrip X-band radiator of active phased antenna arrays have been presented. The basic demands to the radiator have been formulated. The results of computer electromagnetic simulation of the radiator in free space and in the infinite array have been given, as well as the results of radiator experimental testing in the waveguide simulator.

The characteristics of a proposed radiator such as VSWR, decoupling coefficient and losses have been simulated and estimated experimentally on the test sample. Experiment has shown good agreement with numerical simulation results. Particularly, 20% bandwidth with VSWR no greater than 2 has been achieved. Sample testing in a waveguide simulator gives 0,5 dB loss (active and return loss in radiator without loss in simulator itself). Scan angle at 3 dB gain loss, as it follows from numerical simulation results, should be no less than ±40° or ±45° in the main planes. So, proposed microstrip radiator may be used for X-band active phased arrays, which should work in 20% bandwidth with steerable polarization.

Pages: 69-73
References
  1. Proektirovanie fazirovannykh antennykh reshetok. Pod red. D.I. Voskresenskogo. M.: Radiotekhnika. 2003. [in Russian]
  2. Panchenko B.A., Nefedov E.I. Mikropoloskovye antenny. M.: Radio i svyaz'. 1986. [in Russian]
  3. Los' V.F. Mikropoloskovye i dielektricheskie rezonatornye antenny. M.: IPRZhR. 2002. [in Russian]
  4. Batov P.L., Vinnichenko Yu.P., Danilochkina E.N., Dobrozhanskaya O.L., Kalashnik I.E., Leonov D.N., Orlov V.P., Sergeev A.A., Tumanskaya A.E., Feoktistov V.G. Sistema matematicheskogo modelirovaniya i proektirovaniya SVCh-ustrojstv i FAR – «LambdaMDS». Antenny. 2008. № 5. S. 49–57. [in Russian]
  5. Vinnichenko Yu.P., Sekistov A.N., Tumanskaya A.E. Issledovanie kharakteristik elementa fazirovannoj antennoj reshetki v volnovodnom imitatore. Antenny. 1997. № 2. S. 52–58. [in Russian]
  6. Aleksandrov P.L., Vinnichenko Yu.P., Sekistov A.N., Tumanskaya A.E. Odnoelementnyj imitator beskonechnoj FAR s kachaniem lucha. Radiotekhnika. 1995. № 7–8. S. 69–72. [in Russian]
Date of receipt: 16 октября 2018 г.