Journal Achievements of Modern Radioelectronics №6 for 2021 г.
Article in number:
Statistical models of fading signals propagated through the ionospheric satellite channels
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700784-202106-04
UDC: 621.391.01
Authors:

V.V. Batanov1, L.E. Nazarov2

1,2 JSC academician M.F. Reshetnev Information Satellite Systems (Zheleznogorsk, Russia)

2  Kotel’nikov Institute of Radio-Engineering and Electronics of RAS (Fryazino, Russia)

Abstract:

Statistical models of satellite ionospheric radio channels are considered in the article, the influence of which causes fading of signals during their propagation (amplitude and phase variations of signals) due to random temporal and spatial fluctuations of the electron density of ionospheric irregularities. These models are based on the use of empirical laws regarding the densities of the amplitudes and phases of digital signals from the output of signal demodulators. A technique for estimating the probability of erroneous reception of digital signals with phase shift keying using the considered fading models is presented. Estimates of energy losses end errorperformance degradation during propagation along ionospheric satellite radio channels with scintillation index parameters typical for the P- and L-frequency bands, with respect to propagation in free space, have been made.

Pages: 34-43
For citation

Batanov V.V., Nazarov L.E. Statistical models of fading signals propagated through the ionospheric satellite channels. Achievements of modern radioelectronics. 2021. V. 75. № 6. P. 34–43. DOI: https://doi.org/10.18127/j20700784-202106-04 [in Russian]

References
  1. Spilker Dzh. Tsifrovaya sputnikovaya svyaz'. M.: Svyaz'. 1979. [in Russian]
  2. Kolosov M.A., Armand N.A., Yakovlev O.I. Rasprostranenie radiovoln pri kosmicheskoy svyazi. M.: Svyaz'. 1969. [in Russian] 3. Sklyar B. Tsifrovaya svyaz'. Teoreticheskie osnovy i prakticheskoe primenenie. M.: Izd. dom «Vil'yams». 2003. [in Russian]
  3. Proakis J. Digital communication. New York, McGraw-Hill. 1983.
  4. Nazarov L.E., Batanov V.V. Veroyatnostnye kharakteristiki obnaruzheniya radioimpul'sov pri rasprostranenii po ionosfernym liniyam peredachi sputnikovykh sistem svyazi. Radiotekhnika i elektronika. 2017. T. 62. № 9. S. 866–874. [in Russian]
  5. Xiong C., Xu J.-S., Stolle C., van den Ijssel J., Yin F., Kervalishvili G.N., Zangerl F. On the occurrence of GPS signal amplitude degradation for receivers on board LEO satellites. Space Weather. 2020. V. 18. № 18. P. 1–13.
  6. Rino C.L. The Theory of Scintillation with Applications in Remote Sensing. John Wiley & Sons, Hoboken, New Jersey. 2011.
  7. Ionospheric propagation data and prediction methods required for the design of satellite services and systems. Recommendation ITU-R P.531-11. Electronic Publication, Geneva. 2012. 24 p.
  8. Yakovlev O.I., Yakubov V.P., Uryadov V.P., Pavel'ev A.G. Rasprostranenie radiovoln. M.: LENAND. 2009. [in Russian]
  9. Armand N.A. Rasprostranenie shirokopolosnykh signalov v dispersionnykh sredakh. Radiotekhnika i elektronika. 2003. T. 48. № 9. S. 1045–1057. [in Russian]
  10. Kutuza B.G., Moshkov A.V., Pozhidaev V.N. Kombinirovannyy metod, kotoryy ustranyaet vliyanie ionosfery pri obrabotke signalov bortovykh radiolokatorov Р-diapazona s sintezirovannoy aperturoy. Radiotekhnika i elektronika. 2015. T. 60. № 9. S. 889–895. [in Russian]
  11. Bova Yu.I., Kryukovskiy A.S., Lukin D.S. Rasprostranenie chastotno-modulirovannogo izlucheniya elektromagnitnykh voln v ionosfere Zemli s uchetom pogloshcheniya i vneshnego magnitnogo polya. Radiotekhnika i elektronika. 2019. T. 64. № 1. S. 3–14. [in Russian]
  12. Nazarov L.E., Batanov V.V. Analiz iskazheniy radioimpul'sov pri rasprostranenii po ionosfernym liniyam peredachi sputnikovykh sistem svyazi. Elektromagnitnye volny i elektronnye sistemy. 2016. T. 21. № 5. S. 37–45. [in Russian]
  13. Zernov N.N., Gherm V.E. Strong scintillation of GNSS signals in the inhomogeneous ionosphere: 1. Theoretical background. Radio Science. 2015. V. 50. № 2. P. 153–167.
  14. Moraes A.O., Vani B.C., Costa E., Sousasantos J., Abdu M.A., Rodrigues F., Gladek Y.C., Oliveira B.A., Monico J.F. Ionospheric Scintillation Fading Coefficients for the GPS L1, L2, and L5 Frequencies. Radio Science. 2018. V. 53. P. 1165–1174.
  15. Crane R.K. Ionospheric Scintillation. Proceeding of IEEE. 1977. V. 2. P. 180–199.
  16. Priyadarshi S. Review of Ionospheric Scintillation Models. Surveys in Geophysics. 2015. V. 36. № 2. P. 295–324.
  17. Chen S.P., Bilitza D., Liu J.Y., Caton R., Chang L.C., Yeh W.H. An empirical model of L–band scintillation S4 index constructed by using FORMOSAT–3/COSMIC data. Advances in Space Research. 2017. V. 60. P. 1015–1028.
  18. Nazarov L E., Antonov D.V., Batanov V.V., Zudilin A.S., Smirnov V.M. Modeli stsintillyatsii signalov pri rasprostranenii po ionosfernym sputnikovym radioliniyam. Radioelektronika. Nanosistemy. Informatsionnye tekhnologii. 2019. T. 11. № 1. S. 57–64. [in Russian]
  19. Basu S., MacKenzie E., Basu S. Ionospheric constraints on VHF/UHF communications links during solar maximum and minimum periods. Radio Science. 1988. V. 23. P. 363–378.
  20. Nazarov L.E., Smirnov V.M. Otsenivanie veroyatnostnykh kharakteristik priema signalov s ispol'zovaniem modeley zamiraniy pri rasprostranenii po transionosfernym liniyam. Zhurnal radioelektroniki. 2020. № 11. https://doi.org/10.30898/1684-1719.2020.11. [in Russian]
  21. Nazarov L.E., Smirnov V.M. Veroyatnostnye kharakteristiki priema signalov s zamiraniem pri rasprostranenii po sputnikovym ionosfernym radioliniyam. Fizicheskie osnovy priborostroeniya. 2020. T. 9. № 4 (38). S. 18–23. [in Russian]
  22. Rytov S.M., Kravtsov Yu.A., Tatarskiy V.I. Vvedenie v statisticheskuyu radiofiziku. T. 2. Sluchaynye polya. M.: Nauka. 1978. [in Russian]
  23. Tikhonov V.I. Statisticheskaya radiotekhnika. M.: Sov. radio. 1966. [in Russian]
Date of receipt: 05.04.2021
Approved after review: 22.04.2021
Accepted for publication: 25.05.2021