M.A. Peregudov¹, A.Ya. Umanskiy², V.Yu. Chramov³, А.О. Fokin4
1,2,3 MTSC Air Forces «MAA named professor N.E. Zhukovsky and Y.A. Gagarin» (Voronezh, Russia) 4 LTD «STC» (St. Petersburg, Russia)
Today, the basic radio communication standards for building self-organizing networks such as MANET, VANET and FANET are IEEE 802.11s and IEEE 802.11p. The link layer is responsible for establishing and conducting a communication session in these networks. It includes a variety of procedures, the main of which are synchronization procedures, random multiple media access, reserved media access and transmitter power control of network elements. Moreover, in digital radio communication networks of the IEEE 802.11 standards family, both centralized synchronization and distributed synchronization of such network elements are used. However, in digital radio networks of the IEEE 802.11s and IEEE 802.11p standards, the key procedure for establishing and conducting a communication session is the distributed synchronization of the network data elements. It should be noted that there is no descriptive model of distributed synchronization of the IEEE 802.11s and IEEE 802.11p standards digital radio communication network elements, taking into account these standards features. All elements of the IEEE 802.11s and IEEE 802.11p digital radio network send Beacons on a competitive basis. This occurs cyclically at the start of the repeating sync interval. In this regard, the occurrence of three events is possible: successful transmission of the synchronizing Beacon packet, its collision with a similar packet and a service or user data packet. To prevent (reduce) the number of collisions in a digital radio communication network, it is necessary to maintain a constant time difference between the internal time of all network elements. It is worth noting that maintaining a constant time difference for all digital radio communication network elements through guaranteed and timely sending of synchronizing Beacon packets is the main mechanism for distributed synchronization of such network elements. In the event that the calculated value of the time difference Toffsetni for one of the neighboring elements of the digital radio communication network does not coincide with the analogous value obtained in the past synchronization interval Toffsetni-1, then the correction of the own internal TTSF time of the IEEE 802.11s and IEEE 802.11p standards digital radio communication network element begins. The procedure for adjusting the network element internal time continues until the maximum value of this element internal time offset TMaxClockDrift is equal to zero. Also, to reduce or prevent collisions of synchronizing Beacon packets in the data transmission channel, each network element both initially, when entering the network, and immediately when collisions of synchronizing packets occur, Beacon selects and sets the timing parameters of synchronization so that they do not coincide with similar parameters of neighboring network elements. The developed descriptive model of the IEEE 802.11s and IEEE 802.11p standards digital radio communication network elements distributed synchronization includes algorithms for the such network elements functioning, adjusting the such elements intrinsic internal time, searching for an alternative value for the start time of a repeating synchronization interval and adjusting it. The presented model is applicable in the development of analytical and simulation models for assessing the IEEE 802.11s and IEEE 802.11p standards digital radio communication network performance, taking into account the distributed synchronization of such network elements.
Peregudov M.A., Umanskiy A.Ya., Chramov V.Yu., Fokin А.О. Descriptive model for distributed element synchronization digital radio networks of the IEEE 802.11s and IEEE 802.11p standards. Achievements of modern radioelectronics. 2021. V. 75. № 4. P. 21–30. DOI: https://doi.org/10.18127/j20700784-202104-04 [in Russian]
- IEEE standard for information technology–telecommunications and information exchange between systems local and metropolitan area networks– specific requirements PART 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. IEEE Standart 802.11. 2012.
- Ross D. Wi-Fi. Besprovodnaya set'. M.: NT Press. 2007. [in Russian]
- Lozhkin K.Yu., Mironov V.A., Prozhetorko S.S. Pomekhoustoychivost' priema OFDM-signala s fazovoy manipulyatsiey podnesushchikh na fone impul'snoy poligarmonicheskoy pomekhi. Radiotekhnika. 2018. № 11. S. 58–63. [in Russian]
- Lozhkin K.Yu., Stitsenko A.I., Prozhetorko S.S. Effektivnost' vozdeystviya impul'snoy garmonicheskoy pomekhi na kogerentnyy priemnik signalov s dvukratnoy fazoraznostnoy manipulyatsiey. Teoriya i tekhnika radiosvyazi. 2016. № 4. S. 55–62. [in Russian]
- Titov K.D., Lipatov A.O., Zavalishina O.N. Otsenka pomekhoustoychivosti sistemy svyazi standarta IEEE 802.11n pri vozdeystvii pomekh s uchetom struktury paketa peredavaemykh dannykh. Teoriya i tekhnika radiosvyazi. 2019. № 4. S. 95–107. [in Russian]
- Titov K.D., Zavalishina O.N. Otsenka pomekhoustoychivosti sistemy svyazi standarta IEEE 802.11ac pri vozdeystvii pomekh. Uspekhi sovremennoy radioelektroniki. 2019. № 12. S. 191–196. DOI: 10.18127/j20700784-201912-30. [in Russian]
- Peregudov M.A., Boyko A.A. Model' protsedury sluchaynogo mnozhestvennogo dostupa k srede tipa S-ALOHA. Informatsionnoupravlyayushchie sistemy. 2014. № 6. S. 75–81. [in Russian]
- Peregudov M.A., Boyko A.A. Otsenka zashchishchennosti seti paketnoy radiosvyazi ot imitatsii abonentskikh terminalov na urovne protsedury sluchaynogo mnozhestvennogo dostupa k srede tipa S-ALOHA. Informatsionnye tekhnologii. 2015. № 7. S. 527–534. [in Russian]
- Peregudov M.A., Steshkovoy A.S., Boyko A.A. Veroyatnostnaya model' protsedury sluchaynogo mnozhestvennogo dostupa k srede tipa CSMA/CA. Trudy SPIIRAN. 2018. № 4 (59). S. 92–114. [in Russian]
- Peregudov M.A., Semchenko I.A. Otsenka effektivnosti sluchaynogo mnozhestvennogo dostupa k srede tipa ALOHA pri golosovykh soedineniyakh, peredache sluzhebnykh komand, tekstovykh soobshcheniy i mul'timediynykh faylov v usloviyakh destruktivnykh vozdeystviy. Trudy SPIIRAN. 2019. T. 18. № 4. S. 887–911. DOI: 10.15622/sp.2019.18.4.887-911. [in Russian]
- Peregudov M.A., Boyko A.A. Model' protsedury zarezervirovannogo dostupa k srede seti paketnoy radiosvyazi. Telekommunikatsii. 2015. № 6. S. 7–15. [in Russian]
- Peregudov M.A., Boyko A.A. Model' protsedury upravleniya pitaniem seti paketnoy radiosvyazi. Telekommunikatsii. 2015. № 9. S. 13–18. [in Russian]
- Peregudov M.A., Steshkovoy A.S., Shcheglov A.V. Opisatel'naya model' kanal'nogo urovnya setey tsifrovoy radiosvyazi semeystva standartov IEEE 802.11. Sistemy upravleniya, svyazi i bezopasnosti. 2020. № 3. S. 203–221. [in Russian]
- Peregudov M.A., Steshkovoy A.S. Model' tsentralizovannoy sinkhronizatsii elementov setey tsifrovoy radiosvyazi so sluchaynym mnozhestvennym dostupom k srede tipa CSMA/CA. Trudy SPIIRAN. 2020. T. 19. № 1. S. 128–154. DOI: 10.15622/sp.2020.19.1.5. [in Russian]
- Pande H.K., Thapliyal S., Mangal L.C. A new clock synchronization algorithm for multihop wireless ad hoc networks. Proc. IEEE International Conf. on Distributed Computing Systems. 2010. P. 1–5.
- Lai T., Zhou D. Efficient and Scalable IEEE 802.11 ad hoc mode timing synchronization function. 17th IEEE International Conferences on Advanced Information Networking and Applications. 2003. P. 318–323.
- Mahmood A., Trsek H., Gaderer G., Schwalowsky S., Kerö N. Towards High Accuracy in IEEE 802.11 based Clock Synchronization using PTP. International IEEE Symposium on Precision Clock Synchronization for Measurement, Control and Communication (ISPCS 2011). 2011. P. 13–18.
- Elson J., Estrin D. Time Synchronization for Wireless Sensor Networks. Proceedings of the 15th International Parallel & Distributed Processing Symposium. 2001.
- Herman T., Zhang C. Stabilizing clock synchronization for wireless sensor networks. Springer, Heidelberg. 2006. V. 4280. P. 335–349.
- IEEE Standard for Information technology – Telecommunications and information exchange between systems Local and metropolitan area networks – Specific requirements, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, Amendment 10: Mesh Networking, IEEE Std 802.11s™-2011. P. 1–372.
- IEEE Standard for Information technology – Telecommunications and information exchange between systems Local and metropolitan area networks – Specific requirements, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE Std 802.11p™-2010. P. 1–435.